Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
|- ( f : B --> A -> ran f C_ A ) |
2 |
1
|
adantr |
|- ( ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ran f C_ A ) |
3 |
|
ffn |
|- ( f : B --> A -> f Fn B ) |
4 |
|
fnfvelrn |
|- ( ( f Fn B /\ w e. B ) -> ( f ` w ) e. ran f ) |
5 |
3 4
|
sylan |
|- ( ( f : B --> A /\ w e. B ) -> ( f ` w ) e. ran f ) |
6 |
|
sseq2 |
|- ( s = ( f ` w ) -> ( z C_ s <-> z C_ ( f ` w ) ) ) |
7 |
6
|
rspcev |
|- ( ( ( f ` w ) e. ran f /\ z C_ ( f ` w ) ) -> E. s e. ran f z C_ s ) |
8 |
5 7
|
sylan |
|- ( ( ( f : B --> A /\ w e. B ) /\ z C_ ( f ` w ) ) -> E. s e. ran f z C_ s ) |
9 |
8
|
rexlimdva2 |
|- ( f : B --> A -> ( E. w e. B z C_ ( f ` w ) -> E. s e. ran f z C_ s ) ) |
10 |
9
|
ralimdv |
|- ( f : B --> A -> ( A. z e. A E. w e. B z C_ ( f ` w ) -> A. z e. A E. s e. ran f z C_ s ) ) |
11 |
10
|
imp |
|- ( ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> A. z e. A E. s e. ran f z C_ s ) |
12 |
2 11
|
jca |
|- ( ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) |
13 |
|
fvex |
|- ( card ` ran f ) e. _V |
14 |
|
cfval |
|- ( A e. On -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } ) |
15 |
14
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } ) |
16 |
15
|
3ad2ant2 |
|- ( ( x = ( card ` ran f ) /\ ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } ) |
17 |
|
vex |
|- f e. _V |
18 |
17
|
rnex |
|- ran f e. _V |
19 |
|
fveq2 |
|- ( y = ran f -> ( card ` y ) = ( card ` ran f ) ) |
20 |
19
|
eqeq2d |
|- ( y = ran f -> ( x = ( card ` y ) <-> x = ( card ` ran f ) ) ) |
21 |
|
sseq1 |
|- ( y = ran f -> ( y C_ A <-> ran f C_ A ) ) |
22 |
|
rexeq |
|- ( y = ran f -> ( E. s e. y z C_ s <-> E. s e. ran f z C_ s ) ) |
23 |
22
|
ralbidv |
|- ( y = ran f -> ( A. z e. A E. s e. y z C_ s <-> A. z e. A E. s e. ran f z C_ s ) ) |
24 |
21 23
|
anbi12d |
|- ( y = ran f -> ( ( y C_ A /\ A. z e. A E. s e. y z C_ s ) <-> ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) ) |
25 |
20 24
|
anbi12d |
|- ( y = ran f -> ( ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) <-> ( x = ( card ` ran f ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) ) ) |
26 |
18 25
|
spcev |
|- ( ( x = ( card ` ran f ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) ) |
27 |
|
abid |
|- ( x e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } <-> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) ) |
28 |
26 27
|
sylibr |
|- ( ( x = ( card ` ran f ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> x e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } ) |
29 |
|
intss1 |
|- ( x e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } C_ x ) |
30 |
28 29
|
syl |
|- ( ( x = ( card ` ran f ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } C_ x ) |
31 |
30
|
3adant2 |
|- ( ( x = ( card ` ran f ) /\ ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } C_ x ) |
32 |
16 31
|
eqsstrd |
|- ( ( x = ( card ` ran f ) /\ ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) C_ x ) |
33 |
32
|
3expib |
|- ( x = ( card ` ran f ) -> ( ( ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) C_ x ) ) |
34 |
|
sseq2 |
|- ( x = ( card ` ran f ) -> ( ( cf ` A ) C_ x <-> ( cf ` A ) C_ ( card ` ran f ) ) ) |
35 |
33 34
|
sylibd |
|- ( x = ( card ` ran f ) -> ( ( ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) C_ ( card ` ran f ) ) ) |
36 |
13 35
|
vtocle |
|- ( ( ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) C_ ( card ` ran f ) ) |
37 |
12 36
|
sylan2 |
|- ( ( ( A e. On /\ B e. On ) /\ ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) ) -> ( cf ` A ) C_ ( card ` ran f ) ) |
38 |
|
cardidm |
|- ( card ` ( card ` ran f ) ) = ( card ` ran f ) |
39 |
|
onss |
|- ( A e. On -> A C_ On ) |
40 |
1 39
|
sylan9ssr |
|- ( ( A e. On /\ f : B --> A ) -> ran f C_ On ) |
41 |
40
|
3adant2 |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ran f C_ On ) |
42 |
|
onssnum |
|- ( ( ran f e. _V /\ ran f C_ On ) -> ran f e. dom card ) |
43 |
18 41 42
|
sylancr |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ran f e. dom card ) |
44 |
|
cardid2 |
|- ( ran f e. dom card -> ( card ` ran f ) ~~ ran f ) |
45 |
43 44
|
syl |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ran f ) ~~ ran f ) |
46 |
|
onenon |
|- ( B e. On -> B e. dom card ) |
47 |
|
dffn4 |
|- ( f Fn B <-> f : B -onto-> ran f ) |
48 |
3 47
|
sylib |
|- ( f : B --> A -> f : B -onto-> ran f ) |
49 |
|
fodomnum |
|- ( B e. dom card -> ( f : B -onto-> ran f -> ran f ~<_ B ) ) |
50 |
46 48 49
|
syl2im |
|- ( B e. On -> ( f : B --> A -> ran f ~<_ B ) ) |
51 |
50
|
imp |
|- ( ( B e. On /\ f : B --> A ) -> ran f ~<_ B ) |
52 |
51
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ran f ~<_ B ) |
53 |
|
endomtr |
|- ( ( ( card ` ran f ) ~~ ran f /\ ran f ~<_ B ) -> ( card ` ran f ) ~<_ B ) |
54 |
45 52 53
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ran f ) ~<_ B ) |
55 |
|
cardon |
|- ( card ` ran f ) e. On |
56 |
|
onenon |
|- ( ( card ` ran f ) e. On -> ( card ` ran f ) e. dom card ) |
57 |
55 56
|
ax-mp |
|- ( card ` ran f ) e. dom card |
58 |
|
carddom2 |
|- ( ( ( card ` ran f ) e. dom card /\ B e. dom card ) -> ( ( card ` ( card ` ran f ) ) C_ ( card ` B ) <-> ( card ` ran f ) ~<_ B ) ) |
59 |
57 46 58
|
sylancr |
|- ( B e. On -> ( ( card ` ( card ` ran f ) ) C_ ( card ` B ) <-> ( card ` ran f ) ~<_ B ) ) |
60 |
59
|
3ad2ant2 |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( ( card ` ( card ` ran f ) ) C_ ( card ` B ) <-> ( card ` ran f ) ~<_ B ) ) |
61 |
54 60
|
mpbird |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ( card ` ran f ) ) C_ ( card ` B ) ) |
62 |
|
cardonle |
|- ( B e. On -> ( card ` B ) C_ B ) |
63 |
62
|
3ad2ant2 |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` B ) C_ B ) |
64 |
61 63
|
sstrd |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ( card ` ran f ) ) C_ B ) |
65 |
38 64
|
eqsstrrid |
|- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ran f ) C_ B ) |
66 |
65
|
3expa |
|- ( ( ( A e. On /\ B e. On ) /\ f : B --> A ) -> ( card ` ran f ) C_ B ) |
67 |
66
|
adantrr |
|- ( ( ( A e. On /\ B e. On ) /\ ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) ) -> ( card ` ran f ) C_ B ) |
68 |
37 67
|
sstrd |
|- ( ( ( A e. On /\ B e. On ) /\ ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) ) -> ( cf ` A ) C_ B ) |
69 |
68
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ( cf ` A ) C_ B ) ) |
70 |
69
|
exlimdv |
|- ( ( A e. On /\ B e. On ) -> ( E. f ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ( cf ` A ) C_ B ) ) |