Step |
Hyp |
Ref |
Expression |
1 |
|
cffldtocusgr.p |
|- P = { x e. ~P CC | ( # ` x ) = 2 } |
2 |
|
cffldtocusgr.g |
|- G = ( CCfld sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) |
3 |
|
opex |
|- <. ( Base ` ndx ) , CC >. e. _V |
4 |
3
|
tpid1 |
|- <. ( Base ` ndx ) , CC >. e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
5 |
4
|
orci |
|- ( <. ( Base ` ndx ) , CC >. e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ <. ( Base ` ndx ) , CC >. e. { <. ( *r ` ndx ) , * >. } ) |
6 |
|
elun |
|- ( <. ( Base ` ndx ) , CC >. e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) <-> ( <. ( Base ` ndx ) , CC >. e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } \/ <. ( Base ` ndx ) , CC >. e. { <. ( *r ` ndx ) , * >. } ) ) |
7 |
5 6
|
mpbir |
|- <. ( Base ` ndx ) , CC >. e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
8 |
7
|
orci |
|- ( <. ( Base ` ndx ) , CC >. e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) \/ <. ( Base ` ndx ) , CC >. e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
9 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
10 |
9
|
eleq2i |
|- ( <. ( Base ` ndx ) , CC >. e. CCfld <-> <. ( Base ` ndx ) , CC >. e. ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
11 |
|
elun |
|- ( <. ( Base ` ndx ) , CC >. e. ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( <. ( Base ` ndx ) , CC >. e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) \/ <. ( Base ` ndx ) , CC >. e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
12 |
10 11
|
bitri |
|- ( <. ( Base ` ndx ) , CC >. e. CCfld <-> ( <. ( Base ` ndx ) , CC >. e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) \/ <. ( Base ` ndx ) , CC >. e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
13 |
8 12
|
mpbir |
|- <. ( Base ` ndx ) , CC >. e. CCfld |
14 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
15 |
14
|
pweqi |
|- ~P CC = ~P ( Base ` CCfld ) |
16 |
15
|
rabeqi |
|- { x e. ~P CC | ( # ` x ) = 2 } = { x e. ~P ( Base ` CCfld ) | ( # ` x ) = 2 } |
17 |
1 16
|
eqtri |
|- P = { x e. ~P ( Base ` CCfld ) | ( # ` x ) = 2 } |
18 |
|
cnfldstr |
|- CCfld Struct <. 1 , ; 1 3 >. |
19 |
18
|
a1i |
|- ( <. ( Base ` ndx ) , CC >. e. CCfld -> CCfld Struct <. 1 , ; 1 3 >. ) |
20 |
|
fvex |
|- ( Base ` ndx ) e. _V |
21 |
|
cnex |
|- CC e. _V |
22 |
20 21
|
opeldm |
|- ( <. ( Base ` ndx ) , CC >. e. CCfld -> ( Base ` ndx ) e. dom CCfld ) |
23 |
17 19 2 22
|
structtocusgr |
|- ( <. ( Base ` ndx ) , CC >. e. CCfld -> G e. ComplUSGraph ) |
24 |
13 23
|
ax-mp |
|- G e. ComplUSGraph |