Step |
Hyp |
Ref |
Expression |
1 |
|
cfle |
|- ( cf ` ( cf ` A ) ) C_ ( cf ` A ) |
2 |
1
|
a1i |
|- ( A e. On -> ( cf ` ( cf ` A ) ) C_ ( cf ` A ) ) |
3 |
|
cfsmo |
|- ( A e. On -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. x e. A E. y e. ( cf ` A ) x C_ ( f ` y ) ) ) |
4 |
|
cfon |
|- ( cf ` A ) e. On |
5 |
|
cfcoflem |
|- ( ( A e. On /\ ( cf ` A ) e. On ) -> ( E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. x e. A E. y e. ( cf ` A ) x C_ ( f ` y ) ) -> ( cf ` A ) C_ ( cf ` ( cf ` A ) ) ) ) |
6 |
4 5
|
mpan2 |
|- ( A e. On -> ( E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. x e. A E. y e. ( cf ` A ) x C_ ( f ` y ) ) -> ( cf ` A ) C_ ( cf ` ( cf ` A ) ) ) ) |
7 |
3 6
|
mpd |
|- ( A e. On -> ( cf ` A ) C_ ( cf ` ( cf ` A ) ) ) |
8 |
2 7
|
eqssd |
|- ( A e. On -> ( cf ` ( cf ` A ) ) = ( cf ` A ) ) |
9 |
|
cf0 |
|- ( cf ` (/) ) = (/) |
10 |
|
cff |
|- cf : On --> On |
11 |
10
|
fdmi |
|- dom cf = On |
12 |
11
|
eleq2i |
|- ( A e. dom cf <-> A e. On ) |
13 |
|
ndmfv |
|- ( -. A e. dom cf -> ( cf ` A ) = (/) ) |
14 |
12 13
|
sylnbir |
|- ( -. A e. On -> ( cf ` A ) = (/) ) |
15 |
14
|
fveq2d |
|- ( -. A e. On -> ( cf ` ( cf ` A ) ) = ( cf ` (/) ) ) |
16 |
9 15 14
|
3eqtr4a |
|- ( -. A e. On -> ( cf ` ( cf ` A ) ) = ( cf ` A ) ) |
17 |
8 16
|
pm2.61i |
|- ( cf ` ( cf ` A ) ) = ( cf ` A ) |