Metamath Proof Explorer


Theorem cfilfil

Description: A Cauchy filter is a filter. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cfilfil
|- ( ( D e. ( *Met ` X ) /\ F e. ( CauFil ` D ) ) -> F e. ( Fil ` X ) )

Proof

Step Hyp Ref Expression
1 iscfil
 |-  ( D e. ( *Met ` X ) -> ( F e. ( CauFil ` D ) <-> ( F e. ( Fil ` X ) /\ A. x e. RR+ E. y e. F ( D " ( y X. y ) ) C_ ( 0 [,) x ) ) ) )
2 1 simprbda
 |-  ( ( D e. ( *Met ` X ) /\ F e. ( CauFil ` D ) ) -> F e. ( Fil ` X ) )