Metamath Proof Explorer


Theorem cfle

Description: Cofinality is bounded by its argument. Exercise 1 of TakeutiZaring p. 102. (Contributed by NM, 26-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cfle
|- ( cf ` A ) C_ A

Proof

Step Hyp Ref Expression
1 cflecard
 |-  ( cf ` A ) C_ ( card ` A )
2 cardonle
 |-  ( A e. On -> ( card ` A ) C_ A )
3 1 2 sstrid
 |-  ( A e. On -> ( cf ` A ) C_ A )
4 cff
 |-  cf : On --> On
5 4 fdmi
 |-  dom cf = On
6 5 eleq2i
 |-  ( A e. dom cf <-> A e. On )
7 ndmfv
 |-  ( -. A e. dom cf -> ( cf ` A ) = (/) )
8 6 7 sylnbir
 |-  ( -. A e. On -> ( cf ` A ) = (/) )
9 0ss
 |-  (/) C_ A
10 8 9 eqsstrdi
 |-  ( -. A e. On -> ( cf ` A ) C_ A )
11 3 10 pm2.61i
 |-  ( cf ` A ) C_ A