Step |
Hyp |
Ref |
Expression |
1 |
|
cfval |
|- ( A e. On -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
2 |
|
df-sn |
|- { ( card ` A ) } = { x | x = ( card ` A ) } |
3 |
|
ssid |
|- A C_ A |
4 |
|
ssid |
|- z C_ z |
5 |
|
sseq2 |
|- ( w = z -> ( z C_ w <-> z C_ z ) ) |
6 |
5
|
rspcev |
|- ( ( z e. A /\ z C_ z ) -> E. w e. A z C_ w ) |
7 |
4 6
|
mpan2 |
|- ( z e. A -> E. w e. A z C_ w ) |
8 |
7
|
rgen |
|- A. z e. A E. w e. A z C_ w |
9 |
3 8
|
pm3.2i |
|- ( A C_ A /\ A. z e. A E. w e. A z C_ w ) |
10 |
|
fveq2 |
|- ( y = A -> ( card ` y ) = ( card ` A ) ) |
11 |
10
|
eqeq2d |
|- ( y = A -> ( x = ( card ` y ) <-> x = ( card ` A ) ) ) |
12 |
|
sseq1 |
|- ( y = A -> ( y C_ A <-> A C_ A ) ) |
13 |
|
rexeq |
|- ( y = A -> ( E. w e. y z C_ w <-> E. w e. A z C_ w ) ) |
14 |
13
|
ralbidv |
|- ( y = A -> ( A. z e. A E. w e. y z C_ w <-> A. z e. A E. w e. A z C_ w ) ) |
15 |
12 14
|
anbi12d |
|- ( y = A -> ( ( y C_ A /\ A. z e. A E. w e. y z C_ w ) <-> ( A C_ A /\ A. z e. A E. w e. A z C_ w ) ) ) |
16 |
11 15
|
anbi12d |
|- ( y = A -> ( ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) <-> ( x = ( card ` A ) /\ ( A C_ A /\ A. z e. A E. w e. A z C_ w ) ) ) ) |
17 |
16
|
spcegv |
|- ( A e. On -> ( ( x = ( card ` A ) /\ ( A C_ A /\ A. z e. A E. w e. A z C_ w ) ) -> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) ) |
18 |
9 17
|
mpan2i |
|- ( A e. On -> ( x = ( card ` A ) -> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) ) |
19 |
18
|
ss2abdv |
|- ( A e. On -> { x | x = ( card ` A ) } C_ { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
20 |
2 19
|
eqsstrid |
|- ( A e. On -> { ( card ` A ) } C_ { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
21 |
|
intss |
|- ( { ( card ` A ) } C_ { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } C_ |^| { ( card ` A ) } ) |
22 |
20 21
|
syl |
|- ( A e. On -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } C_ |^| { ( card ` A ) } ) |
23 |
|
fvex |
|- ( card ` A ) e. _V |
24 |
23
|
intsn |
|- |^| { ( card ` A ) } = ( card ` A ) |
25 |
22 24
|
sseqtrdi |
|- ( A e. On -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } C_ ( card ` A ) ) |
26 |
1 25
|
eqsstrd |
|- ( A e. On -> ( cf ` A ) C_ ( card ` A ) ) |
27 |
|
cff |
|- cf : On --> On |
28 |
27
|
fdmi |
|- dom cf = On |
29 |
28
|
eleq2i |
|- ( A e. dom cf <-> A e. On ) |
30 |
|
ndmfv |
|- ( -. A e. dom cf -> ( cf ` A ) = (/) ) |
31 |
29 30
|
sylnbir |
|- ( -. A e. On -> ( cf ` A ) = (/) ) |
32 |
|
0ss |
|- (/) C_ ( card ` A ) |
33 |
31 32
|
eqsstrdi |
|- ( -. A e. On -> ( cf ` A ) C_ ( card ` A ) ) |
34 |
26 33
|
pm2.61i |
|- ( cf ` A ) C_ ( card ` A ) |