Metamath Proof Explorer


Theorem cfom

Description: Value of the cofinality function at omega (the set of natural numbers). Exercise 4 of TakeutiZaring p. 102. (Contributed by NM, 23-Apr-2004) (Proof shortened by Mario Carneiro, 11-Jun-2015)

Ref Expression
Assertion cfom
|- ( cf ` _om ) = _om

Proof

Step Hyp Ref Expression
1 cfle
 |-  ( cf ` _om ) C_ _om
2 limom
 |-  Lim _om
3 omex
 |-  _om e. _V
4 3 cflim2
 |-  ( Lim _om <-> Lim ( cf ` _om ) )
5 2 4 mpbi
 |-  Lim ( cf ` _om )
6 limomss
 |-  ( Lim ( cf ` _om ) -> _om C_ ( cf ` _om ) )
7 5 6 ax-mp
 |-  _om C_ ( cf ` _om )
8 1 7 eqssi
 |-  ( cf ` _om ) = _om