Step |
Hyp |
Ref |
Expression |
1 |
|
cfpwsdom.1 |
|- B e. _V |
2 |
|
ovex |
|- ( B ^m ( aleph ` A ) ) e. _V |
3 |
2
|
cardid |
|- ( card ` ( B ^m ( aleph ` A ) ) ) ~~ ( B ^m ( aleph ` A ) ) |
4 |
3
|
ensymi |
|- ( B ^m ( aleph ` A ) ) ~~ ( card ` ( B ^m ( aleph ` A ) ) ) |
5 |
|
fvex |
|- ( aleph ` A ) e. _V |
6 |
5
|
canth2 |
|- ( aleph ` A ) ~< ~P ( aleph ` A ) |
7 |
5
|
pw2en |
|- ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) |
8 |
|
sdomentr |
|- ( ( ( aleph ` A ) ~< ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) ) |
9 |
6 7 8
|
mp2an |
|- ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) |
10 |
|
mapdom1 |
|- ( 2o ~<_ B -> ( 2o ^m ( aleph ` A ) ) ~<_ ( B ^m ( aleph ` A ) ) ) |
11 |
|
sdomdomtr |
|- ( ( ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) /\ ( 2o ^m ( aleph ` A ) ) ~<_ ( B ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) |
12 |
9 10 11
|
sylancr |
|- ( 2o ~<_ B -> ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) |
13 |
|
ficard |
|- ( ( B ^m ( aleph ` A ) ) e. _V -> ( ( B ^m ( aleph ` A ) ) e. Fin <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) ) |
14 |
2 13
|
ax-mp |
|- ( ( B ^m ( aleph ` A ) ) e. Fin <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) |
15 |
|
fict |
|- ( ( B ^m ( aleph ` A ) ) e. Fin -> ( B ^m ( aleph ` A ) ) ~<_ _om ) |
16 |
14 15
|
sylbir |
|- ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( B ^m ( aleph ` A ) ) ~<_ _om ) |
17 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
18 |
|
alephon |
|- ( aleph ` A ) e. On |
19 |
|
ssdomg |
|- ( ( aleph ` A ) e. On -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
20 |
18 19
|
ax-mp |
|- ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) |
21 |
17 20
|
sylbi |
|- ( A e. On -> _om ~<_ ( aleph ` A ) ) |
22 |
|
domtr |
|- ( ( ( B ^m ( aleph ` A ) ) ~<_ _om /\ _om ~<_ ( aleph ` A ) ) -> ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) ) |
23 |
16 21 22
|
syl2an |
|- ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om /\ A e. On ) -> ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) ) |
24 |
|
domnsym |
|- ( ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) |
25 |
23 24
|
syl |
|- ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om /\ A e. On ) -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) |
26 |
25
|
expcom |
|- ( A e. On -> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) ) |
27 |
26
|
con2d |
|- ( A e. On -> ( ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) -> -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) ) |
28 |
|
cardidm |
|- ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) |
29 |
|
iscard3 |
|- ( ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. ( _om u. ran aleph ) ) |
30 |
|
elun |
|- ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ( _om u. ran aleph ) <-> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om \/ ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) |
31 |
|
df-or |
|- ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om \/ ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) <-> ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) |
32 |
29 30 31
|
3bitri |
|- ( ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) <-> ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) |
33 |
28 32
|
mpbi |
|- ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) |
34 |
12 27 33
|
syl56 |
|- ( A e. On -> ( 2o ~<_ B -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) |
35 |
|
alephfnon |
|- aleph Fn On |
36 |
|
fvelrnb |
|- ( aleph Fn On -> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
37 |
35 36
|
ax-mp |
|- ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) |
38 |
34 37
|
syl6ib |
|- ( A e. On -> ( 2o ~<_ B -> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
39 |
|
eqid |
|- ( y e. ( cf ` ( aleph ` x ) ) |-> ( har ` ( z ` y ) ) ) = ( y e. ( cf ` ( aleph ` x ) ) |-> ( har ` ( z ` y ) ) ) |
40 |
39
|
pwcfsdom |
|- ( aleph ` x ) ~< ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) |
41 |
|
id |
|- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) |
42 |
|
fveq2 |
|- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( cf ` ( aleph ` x ) ) = ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
43 |
41 42
|
oveq12d |
|- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) = ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
44 |
41 43
|
breq12d |
|- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( ( aleph ` x ) ~< ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) <-> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
45 |
40 44
|
mpbii |
|- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
46 |
45
|
rexlimivw |
|- ( E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
47 |
38 46
|
syl6 |
|- ( A e. On -> ( 2o ~<_ B -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
48 |
47
|
imp |
|- ( ( A e. On /\ 2o ~<_ B ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
49 |
|
ensdomtr |
|- ( ( ( B ^m ( aleph ` A ) ) ~~ ( card ` ( B ^m ( aleph ` A ) ) ) /\ ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) -> ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
50 |
4 48 49
|
sylancr |
|- ( ( A e. On /\ 2o ~<_ B ) -> ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
51 |
|
fvex |
|- ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V |
52 |
51
|
enref |
|- ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~~ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) |
53 |
|
mapen |
|- ( ( ( card ` ( B ^m ( aleph ` A ) ) ) ~~ ( B ^m ( aleph ` A ) ) /\ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~~ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) -> ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
54 |
3 52 53
|
mp2an |
|- ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
55 |
|
mapxpen |
|- ( ( B e. _V /\ ( aleph ` A ) e. On /\ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V ) -> ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
56 |
1 18 51 55
|
mp3an |
|- ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
57 |
54 56
|
entri |
|- ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
58 |
|
sdomentr |
|- ( ( ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) /\ ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) -> ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
59 |
50 57 58
|
sylancl |
|- ( ( A e. On /\ 2o ~<_ B ) -> ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
60 |
5
|
xpdom2 |
|- ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) ) |
61 |
17
|
biimpi |
|- ( A e. On -> _om C_ ( aleph ` A ) ) |
62 |
|
infxpen |
|- ( ( ( aleph ` A ) e. On /\ _om C_ ( aleph ` A ) ) -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) |
63 |
18 61 62
|
sylancr |
|- ( A e. On -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) |
64 |
|
domentr |
|- ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) /\ ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) ) |
65 |
60 63 64
|
syl2an |
|- ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) ) |
66 |
|
nsuceq0 |
|- suc 1o =/= (/) |
67 |
|
dom0 |
|- ( suc 1o ~<_ (/) <-> suc 1o = (/) ) |
68 |
66 67
|
nemtbir |
|- -. suc 1o ~<_ (/) |
69 |
|
df-2o |
|- 2o = suc 1o |
70 |
69
|
breq1i |
|- ( 2o ~<_ B <-> suc 1o ~<_ B ) |
71 |
|
breq2 |
|- ( B = (/) -> ( suc 1o ~<_ B <-> suc 1o ~<_ (/) ) ) |
72 |
70 71
|
syl5bb |
|- ( B = (/) -> ( 2o ~<_ B <-> suc 1o ~<_ (/) ) ) |
73 |
72
|
biimpcd |
|- ( 2o ~<_ B -> ( B = (/) -> suc 1o ~<_ (/) ) ) |
74 |
73
|
adantld |
|- ( 2o ~<_ B -> ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) -> suc 1o ~<_ (/) ) ) |
75 |
68 74
|
mtoi |
|- ( 2o ~<_ B -> -. ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) ) |
76 |
|
mapdom2 |
|- ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) /\ -. ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) ) -> ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) ) |
77 |
65 75 76
|
syl2an |
|- ( ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) /\ 2o ~<_ B ) -> ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) ) |
78 |
|
domnsym |
|- ( ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
79 |
77 78
|
syl |
|- ( ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) /\ 2o ~<_ B ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
80 |
79
|
expl |
|- ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> ( ( A e. On /\ 2o ~<_ B ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) ) |
81 |
80
|
com12 |
|- ( ( A e. On /\ 2o ~<_ B ) -> ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) ) |
82 |
59 81
|
mt2d |
|- ( ( A e. On /\ 2o ~<_ B ) -> -. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) ) |
83 |
|
domtri |
|- ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V /\ ( aleph ` A ) e. _V ) -> ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) <-> -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
84 |
51 5 83
|
mp2an |
|- ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) <-> -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
85 |
84
|
biimpri |
|- ( -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) ) |
86 |
82 85
|
nsyl2 |
|- ( ( A e. On /\ 2o ~<_ B ) -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
87 |
86
|
ex |
|- ( A e. On -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
88 |
|
fndm |
|- ( aleph Fn On -> dom aleph = On ) |
89 |
35 88
|
ax-mp |
|- dom aleph = On |
90 |
89
|
eleq2i |
|- ( A e. dom aleph <-> A e. On ) |
91 |
|
ndmfv |
|- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
92 |
90 91
|
sylnbir |
|- ( -. A e. On -> ( aleph ` A ) = (/) ) |
93 |
|
1n0 |
|- 1o =/= (/) |
94 |
|
1oex |
|- 1o e. _V |
95 |
94
|
0sdom |
|- ( (/) ~< 1o <-> 1o =/= (/) ) |
96 |
93 95
|
mpbir |
|- (/) ~< 1o |
97 |
|
id |
|- ( ( aleph ` A ) = (/) -> ( aleph ` A ) = (/) ) |
98 |
|
oveq2 |
|- ( ( aleph ` A ) = (/) -> ( B ^m ( aleph ` A ) ) = ( B ^m (/) ) ) |
99 |
|
map0e |
|- ( B e. _V -> ( B ^m (/) ) = 1o ) |
100 |
1 99
|
ax-mp |
|- ( B ^m (/) ) = 1o |
101 |
98 100
|
eqtrdi |
|- ( ( aleph ` A ) = (/) -> ( B ^m ( aleph ` A ) ) = 1o ) |
102 |
101
|
fveq2d |
|- ( ( aleph ` A ) = (/) -> ( card ` ( B ^m ( aleph ` A ) ) ) = ( card ` 1o ) ) |
103 |
|
1onn |
|- 1o e. _om |
104 |
|
cardnn |
|- ( 1o e. _om -> ( card ` 1o ) = 1o ) |
105 |
103 104
|
ax-mp |
|- ( card ` 1o ) = 1o |
106 |
102 105
|
eqtrdi |
|- ( ( aleph ` A ) = (/) -> ( card ` ( B ^m ( aleph ` A ) ) ) = 1o ) |
107 |
106
|
fveq2d |
|- ( ( aleph ` A ) = (/) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( cf ` 1o ) ) |
108 |
|
df-1o |
|- 1o = suc (/) |
109 |
108
|
fveq2i |
|- ( cf ` 1o ) = ( cf ` suc (/) ) |
110 |
|
0elon |
|- (/) e. On |
111 |
|
cfsuc |
|- ( (/) e. On -> ( cf ` suc (/) ) = 1o ) |
112 |
110 111
|
ax-mp |
|- ( cf ` suc (/) ) = 1o |
113 |
109 112
|
eqtri |
|- ( cf ` 1o ) = 1o |
114 |
107 113
|
eqtrdi |
|- ( ( aleph ` A ) = (/) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = 1o ) |
115 |
97 114
|
breq12d |
|- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) <-> (/) ~< 1o ) ) |
116 |
96 115
|
mpbiri |
|- ( ( aleph ` A ) = (/) -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
117 |
116
|
a1d |
|- ( ( aleph ` A ) = (/) -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
118 |
92 117
|
syl |
|- ( -. A e. On -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
119 |
87 118
|
pm2.61i |
|- ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |