| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cfpwsdom.1 |  |-  B e. _V | 
						
							| 2 |  | ovex |  |-  ( B ^m ( aleph ` A ) ) e. _V | 
						
							| 3 | 2 | cardid |  |-  ( card ` ( B ^m ( aleph ` A ) ) ) ~~ ( B ^m ( aleph ` A ) ) | 
						
							| 4 | 3 | ensymi |  |-  ( B ^m ( aleph ` A ) ) ~~ ( card ` ( B ^m ( aleph ` A ) ) ) | 
						
							| 5 |  | fvex |  |-  ( aleph ` A ) e. _V | 
						
							| 6 | 5 | canth2 |  |-  ( aleph ` A ) ~< ~P ( aleph ` A ) | 
						
							| 7 | 5 | pw2en |  |-  ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) | 
						
							| 8 |  | sdomentr |  |-  ( ( ( aleph ` A ) ~< ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) | 
						
							| 10 |  | mapdom1 |  |-  ( 2o ~<_ B -> ( 2o ^m ( aleph ` A ) ) ~<_ ( B ^m ( aleph ` A ) ) ) | 
						
							| 11 |  | sdomdomtr |  |-  ( ( ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) /\ ( 2o ^m ( aleph ` A ) ) ~<_ ( B ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( 2o ~<_ B -> ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) | 
						
							| 13 |  | ficard |  |-  ( ( B ^m ( aleph ` A ) ) e. _V -> ( ( B ^m ( aleph ` A ) ) e. Fin <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) ) | 
						
							| 14 | 2 13 | ax-mp |  |-  ( ( B ^m ( aleph ` A ) ) e. Fin <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) | 
						
							| 15 |  | fict |  |-  ( ( B ^m ( aleph ` A ) ) e. Fin -> ( B ^m ( aleph ` A ) ) ~<_ _om ) | 
						
							| 16 | 14 15 | sylbir |  |-  ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( B ^m ( aleph ` A ) ) ~<_ _om ) | 
						
							| 17 |  | alephgeom |  |-  ( A e. On <-> _om C_ ( aleph ` A ) ) | 
						
							| 18 |  | alephon |  |-  ( aleph ` A ) e. On | 
						
							| 19 |  | ssdomg |  |-  ( ( aleph ` A ) e. On -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) | 
						
							| 21 | 17 20 | sylbi |  |-  ( A e. On -> _om ~<_ ( aleph ` A ) ) | 
						
							| 22 |  | domtr |  |-  ( ( ( B ^m ( aleph ` A ) ) ~<_ _om /\ _om ~<_ ( aleph ` A ) ) -> ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) ) | 
						
							| 23 | 16 21 22 | syl2an |  |-  ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om /\ A e. On ) -> ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) ) | 
						
							| 24 |  | domnsym |  |-  ( ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om /\ A e. On ) -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) | 
						
							| 26 | 25 | expcom |  |-  ( A e. On -> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) ) | 
						
							| 27 | 26 | con2d |  |-  ( A e. On -> ( ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) -> -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) ) | 
						
							| 28 |  | cardidm |  |-  ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) | 
						
							| 29 |  | iscard3 |  |-  ( ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. ( _om u. ran aleph ) ) | 
						
							| 30 |  | elun |  |-  ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ( _om u. ran aleph ) <-> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om \/ ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) | 
						
							| 31 |  | df-or |  |-  ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om \/ ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) <-> ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) | 
						
							| 32 | 29 30 31 | 3bitri |  |-  ( ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) <-> ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) | 
						
							| 33 | 28 32 | mpbi |  |-  ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) | 
						
							| 34 | 12 27 33 | syl56 |  |-  ( A e. On -> ( 2o ~<_ B -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) | 
						
							| 35 |  | alephfnon |  |-  aleph Fn On | 
						
							| 36 |  | fvelrnb |  |-  ( aleph Fn On -> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) ) | 
						
							| 37 | 35 36 | ax-mp |  |-  ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) | 
						
							| 38 | 34 37 | imbitrdi |  |-  ( A e. On -> ( 2o ~<_ B -> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) ) | 
						
							| 39 |  | eqid |  |-  ( y e. ( cf ` ( aleph ` x ) ) |-> ( har ` ( z ` y ) ) ) = ( y e. ( cf ` ( aleph ` x ) ) |-> ( har ` ( z ` y ) ) ) | 
						
							| 40 | 39 | pwcfsdom |  |-  ( aleph ` x ) ~< ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) | 
						
							| 41 |  | id |  |-  ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) | 
						
							| 42 |  | fveq2 |  |-  ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( cf ` ( aleph ` x ) ) = ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) | 
						
							| 43 | 41 42 | oveq12d |  |-  ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) = ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 44 | 41 43 | breq12d |  |-  ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( ( aleph ` x ) ~< ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) <-> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) | 
						
							| 45 | 40 44 | mpbii |  |-  ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 46 | 45 | rexlimivw |  |-  ( E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 47 | 38 46 | syl6 |  |-  ( A e. On -> ( 2o ~<_ B -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( A e. On /\ 2o ~<_ B ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 49 |  | ensdomtr |  |-  ( ( ( B ^m ( aleph ` A ) ) ~~ ( card ` ( B ^m ( aleph ` A ) ) ) /\ ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) -> ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 50 | 4 48 49 | sylancr |  |-  ( ( A e. On /\ 2o ~<_ B ) -> ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 51 |  | fvex |  |-  ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V | 
						
							| 52 | 51 | enref |  |-  ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~~ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) | 
						
							| 53 |  | mapen |  |-  ( ( ( card ` ( B ^m ( aleph ` A ) ) ) ~~ ( B ^m ( aleph ` A ) ) /\ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~~ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) -> ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 54 | 3 52 53 | mp2an |  |-  ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) | 
						
							| 55 |  | mapxpen |  |-  ( ( B e. _V /\ ( aleph ` A ) e. On /\ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V ) -> ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) | 
						
							| 56 | 1 18 51 55 | mp3an |  |-  ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 57 | 54 56 | entri |  |-  ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 58 |  | sdomentr |  |-  ( ( ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) /\ ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) -> ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) | 
						
							| 59 | 50 57 58 | sylancl |  |-  ( ( A e. On /\ 2o ~<_ B ) -> ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) | 
						
							| 60 | 5 | xpdom2 |  |-  ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) ) | 
						
							| 61 | 17 | biimpi |  |-  ( A e. On -> _om C_ ( aleph ` A ) ) | 
						
							| 62 |  | infxpen |  |-  ( ( ( aleph ` A ) e. On /\ _om C_ ( aleph ` A ) ) -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) | 
						
							| 63 | 18 61 62 | sylancr |  |-  ( A e. On -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) | 
						
							| 64 |  | domentr |  |-  ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) /\ ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) ) | 
						
							| 65 | 60 63 64 | syl2an |  |-  ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) ) | 
						
							| 66 |  | nsuceq0 |  |-  suc 1o =/= (/) | 
						
							| 67 |  | dom0 |  |-  ( suc 1o ~<_ (/) <-> suc 1o = (/) ) | 
						
							| 68 | 66 67 | nemtbir |  |-  -. suc 1o ~<_ (/) | 
						
							| 69 |  | df-2o |  |-  2o = suc 1o | 
						
							| 70 | 69 | breq1i |  |-  ( 2o ~<_ B <-> suc 1o ~<_ B ) | 
						
							| 71 |  | breq2 |  |-  ( B = (/) -> ( suc 1o ~<_ B <-> suc 1o ~<_ (/) ) ) | 
						
							| 72 | 70 71 | bitrid |  |-  ( B = (/) -> ( 2o ~<_ B <-> suc 1o ~<_ (/) ) ) | 
						
							| 73 | 72 | biimpcd |  |-  ( 2o ~<_ B -> ( B = (/) -> suc 1o ~<_ (/) ) ) | 
						
							| 74 | 73 | adantld |  |-  ( 2o ~<_ B -> ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) -> suc 1o ~<_ (/) ) ) | 
						
							| 75 | 68 74 | mtoi |  |-  ( 2o ~<_ B -> -. ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) ) | 
						
							| 76 |  | mapdom2 |  |-  ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) /\ -. ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) ) -> ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) ) | 
						
							| 77 | 65 75 76 | syl2an |  |-  ( ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) /\ 2o ~<_ B ) -> ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) ) | 
						
							| 78 |  | domnsym |  |-  ( ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) | 
						
							| 79 | 77 78 | syl |  |-  ( ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) /\ 2o ~<_ B ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) | 
						
							| 80 | 79 | expl |  |-  ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> ( ( A e. On /\ 2o ~<_ B ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) ) | 
						
							| 81 | 80 | com12 |  |-  ( ( A e. On /\ 2o ~<_ B ) -> ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) ) | 
						
							| 82 | 59 81 | mt2d |  |-  ( ( A e. On /\ 2o ~<_ B ) -> -. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) ) | 
						
							| 83 |  | domtri |  |-  ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V /\ ( aleph ` A ) e. _V ) -> ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) <-> -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 84 | 51 5 83 | mp2an |  |-  ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) <-> -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) | 
						
							| 85 | 84 | biimpri |  |-  ( -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) ) | 
						
							| 86 | 82 85 | nsyl2 |  |-  ( ( A e. On /\ 2o ~<_ B ) -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) | 
						
							| 87 | 86 | ex |  |-  ( A e. On -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 88 |  | fndm |  |-  ( aleph Fn On -> dom aleph = On ) | 
						
							| 89 | 35 88 | ax-mp |  |-  dom aleph = On | 
						
							| 90 | 89 | eleq2i |  |-  ( A e. dom aleph <-> A e. On ) | 
						
							| 91 |  | ndmfv |  |-  ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) | 
						
							| 92 | 90 91 | sylnbir |  |-  ( -. A e. On -> ( aleph ` A ) = (/) ) | 
						
							| 93 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 94 |  | 1oex |  |-  1o e. _V | 
						
							| 95 | 94 | 0sdom |  |-  ( (/) ~< 1o <-> 1o =/= (/) ) | 
						
							| 96 | 93 95 | mpbir |  |-  (/) ~< 1o | 
						
							| 97 |  | id |  |-  ( ( aleph ` A ) = (/) -> ( aleph ` A ) = (/) ) | 
						
							| 98 |  | oveq2 |  |-  ( ( aleph ` A ) = (/) -> ( B ^m ( aleph ` A ) ) = ( B ^m (/) ) ) | 
						
							| 99 |  | map0e |  |-  ( B e. _V -> ( B ^m (/) ) = 1o ) | 
						
							| 100 | 1 99 | ax-mp |  |-  ( B ^m (/) ) = 1o | 
						
							| 101 | 98 100 | eqtrdi |  |-  ( ( aleph ` A ) = (/) -> ( B ^m ( aleph ` A ) ) = 1o ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ( aleph ` A ) = (/) -> ( card ` ( B ^m ( aleph ` A ) ) ) = ( card ` 1o ) ) | 
						
							| 103 |  | 1onn |  |-  1o e. _om | 
						
							| 104 |  | cardnn |  |-  ( 1o e. _om -> ( card ` 1o ) = 1o ) | 
						
							| 105 | 103 104 | ax-mp |  |-  ( card ` 1o ) = 1o | 
						
							| 106 | 102 105 | eqtrdi |  |-  ( ( aleph ` A ) = (/) -> ( card ` ( B ^m ( aleph ` A ) ) ) = 1o ) | 
						
							| 107 | 106 | fveq2d |  |-  ( ( aleph ` A ) = (/) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( cf ` 1o ) ) | 
						
							| 108 |  | df-1o |  |-  1o = suc (/) | 
						
							| 109 | 108 | fveq2i |  |-  ( cf ` 1o ) = ( cf ` suc (/) ) | 
						
							| 110 |  | 0elon |  |-  (/) e. On | 
						
							| 111 |  | cfsuc |  |-  ( (/) e. On -> ( cf ` suc (/) ) = 1o ) | 
						
							| 112 | 110 111 | ax-mp |  |-  ( cf ` suc (/) ) = 1o | 
						
							| 113 | 109 112 | eqtri |  |-  ( cf ` 1o ) = 1o | 
						
							| 114 | 107 113 | eqtrdi |  |-  ( ( aleph ` A ) = (/) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = 1o ) | 
						
							| 115 | 97 114 | breq12d |  |-  ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) <-> (/) ~< 1o ) ) | 
						
							| 116 | 96 115 | mpbiri |  |-  ( ( aleph ` A ) = (/) -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) | 
						
							| 117 | 116 | a1d |  |-  ( ( aleph ` A ) = (/) -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 118 | 92 117 | syl |  |-  ( -. A e. On -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) | 
						
							| 119 | 87 118 | pm2.61i |  |-  ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |