Step |
Hyp |
Ref |
Expression |
1 |
|
cfslb.1 |
|- A e. _V |
2 |
|
fvex |
|- ( card ` B ) e. _V |
3 |
|
ssid |
|- ( card ` B ) C_ ( card ` B ) |
4 |
1
|
ssex |
|- ( B C_ A -> B e. _V ) |
5 |
4
|
ad2antrr |
|- ( ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) -> B e. _V ) |
6 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
7 |
|
sseq1 |
|- ( x = B -> ( x C_ A <-> B C_ A ) ) |
8 |
6 7
|
syl5bb |
|- ( x = B -> ( x e. ~P A <-> B C_ A ) ) |
9 |
|
unieq |
|- ( x = B -> U. x = U. B ) |
10 |
9
|
eqeq1d |
|- ( x = B -> ( U. x = A <-> U. B = A ) ) |
11 |
8 10
|
anbi12d |
|- ( x = B -> ( ( x e. ~P A /\ U. x = A ) <-> ( B C_ A /\ U. B = A ) ) ) |
12 |
|
fveq2 |
|- ( x = B -> ( card ` x ) = ( card ` B ) ) |
13 |
12
|
sseq1d |
|- ( x = B -> ( ( card ` x ) C_ ( card ` B ) <-> ( card ` B ) C_ ( card ` B ) ) ) |
14 |
11 13
|
anbi12d |
|- ( x = B -> ( ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) <-> ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) ) ) |
15 |
14
|
spcegv |
|- ( B e. _V -> ( ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) -> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) ) |
16 |
5 15
|
mpcom |
|- ( ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) -> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) |
17 |
|
df-rex |
|- ( E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) <-> E. x ( x e. { x e. ~P A | U. x = A } /\ ( card ` x ) C_ ( card ` B ) ) ) |
18 |
|
rabid |
|- ( x e. { x e. ~P A | U. x = A } <-> ( x e. ~P A /\ U. x = A ) ) |
19 |
18
|
anbi1i |
|- ( ( x e. { x e. ~P A | U. x = A } /\ ( card ` x ) C_ ( card ` B ) ) <-> ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) |
20 |
19
|
exbii |
|- ( E. x ( x e. { x e. ~P A | U. x = A } /\ ( card ` x ) C_ ( card ` B ) ) <-> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) |
21 |
17 20
|
bitri |
|- ( E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) <-> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) |
22 |
16 21
|
sylibr |
|- ( ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) -> E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) |
23 |
3 22
|
mpan2 |
|- ( ( B C_ A /\ U. B = A ) -> E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) |
24 |
|
iinss |
|- ( E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) -> |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) |
25 |
23 24
|
syl |
|- ( ( B C_ A /\ U. B = A ) -> |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) |
26 |
1
|
cflim3 |
|- ( Lim A -> ( cf ` A ) = |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) ) |
27 |
26
|
sseq1d |
|- ( Lim A -> ( ( cf ` A ) C_ ( card ` B ) <-> |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) ) |
28 |
25 27
|
syl5ibr |
|- ( Lim A -> ( ( B C_ A /\ U. B = A ) -> ( cf ` A ) C_ ( card ` B ) ) ) |
29 |
28
|
3impib |
|- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) C_ ( card ` B ) ) |
30 |
|
ssdomg |
|- ( ( card ` B ) e. _V -> ( ( cf ` A ) C_ ( card ` B ) -> ( cf ` A ) ~<_ ( card ` B ) ) ) |
31 |
2 29 30
|
mpsyl |
|- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) ~<_ ( card ` B ) ) |
32 |
|
limord |
|- ( Lim A -> Ord A ) |
33 |
|
ordsson |
|- ( Ord A -> A C_ On ) |
34 |
32 33
|
syl |
|- ( Lim A -> A C_ On ) |
35 |
|
sstr2 |
|- ( B C_ A -> ( A C_ On -> B C_ On ) ) |
36 |
34 35
|
mpan9 |
|- ( ( Lim A /\ B C_ A ) -> B C_ On ) |
37 |
|
onssnum |
|- ( ( B e. _V /\ B C_ On ) -> B e. dom card ) |
38 |
4 36 37
|
syl2an2 |
|- ( ( Lim A /\ B C_ A ) -> B e. dom card ) |
39 |
|
cardid2 |
|- ( B e. dom card -> ( card ` B ) ~~ B ) |
40 |
38 39
|
syl |
|- ( ( Lim A /\ B C_ A ) -> ( card ` B ) ~~ B ) |
41 |
40
|
3adant3 |
|- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( card ` B ) ~~ B ) |
42 |
|
domentr |
|- ( ( ( cf ` A ) ~<_ ( card ` B ) /\ ( card ` B ) ~~ B ) -> ( cf ` A ) ~<_ B ) |
43 |
31 41 42
|
syl2anc |
|- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) ~<_ B ) |