| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cfslb.1 |
|- A e. _V |
| 2 |
|
uniss |
|- ( B C_ A -> U. B C_ U. A ) |
| 3 |
|
limuni |
|- ( Lim A -> A = U. A ) |
| 4 |
3
|
sseq2d |
|- ( Lim A -> ( U. B C_ A <-> U. B C_ U. A ) ) |
| 5 |
2 4
|
imbitrrid |
|- ( Lim A -> ( B C_ A -> U. B C_ A ) ) |
| 6 |
5
|
imp |
|- ( ( Lim A /\ B C_ A ) -> U. B C_ A ) |
| 7 |
|
limord |
|- ( Lim A -> Ord A ) |
| 8 |
|
ordsson |
|- ( Ord A -> A C_ On ) |
| 9 |
7 8
|
syl |
|- ( Lim A -> A C_ On ) |
| 10 |
|
sstr2 |
|- ( B C_ A -> ( A C_ On -> B C_ On ) ) |
| 11 |
9 10
|
syl5com |
|- ( Lim A -> ( B C_ A -> B C_ On ) ) |
| 12 |
|
ssorduni |
|- ( B C_ On -> Ord U. B ) |
| 13 |
11 12
|
syl6 |
|- ( Lim A -> ( B C_ A -> Ord U. B ) ) |
| 14 |
13 7
|
jctird |
|- ( Lim A -> ( B C_ A -> ( Ord U. B /\ Ord A ) ) ) |
| 15 |
|
ordsseleq |
|- ( ( Ord U. B /\ Ord A ) -> ( U. B C_ A <-> ( U. B e. A \/ U. B = A ) ) ) |
| 16 |
14 15
|
syl6 |
|- ( Lim A -> ( B C_ A -> ( U. B C_ A <-> ( U. B e. A \/ U. B = A ) ) ) ) |
| 17 |
16
|
imp |
|- ( ( Lim A /\ B C_ A ) -> ( U. B C_ A <-> ( U. B e. A \/ U. B = A ) ) ) |
| 18 |
6 17
|
mpbid |
|- ( ( Lim A /\ B C_ A ) -> ( U. B e. A \/ U. B = A ) ) |
| 19 |
18
|
ord |
|- ( ( Lim A /\ B C_ A ) -> ( -. U. B e. A -> U. B = A ) ) |
| 20 |
1
|
cfslb |
|- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) ~<_ B ) |
| 21 |
|
domnsym |
|- ( ( cf ` A ) ~<_ B -> -. B ~< ( cf ` A ) ) |
| 22 |
20 21
|
syl |
|- ( ( Lim A /\ B C_ A /\ U. B = A ) -> -. B ~< ( cf ` A ) ) |
| 23 |
22
|
3expia |
|- ( ( Lim A /\ B C_ A ) -> ( U. B = A -> -. B ~< ( cf ` A ) ) ) |
| 24 |
19 23
|
syld |
|- ( ( Lim A /\ B C_ A ) -> ( -. U. B e. A -> -. B ~< ( cf ` A ) ) ) |
| 25 |
24
|
con4d |
|- ( ( Lim A /\ B C_ A ) -> ( B ~< ( cf ` A ) -> U. B e. A ) ) |
| 26 |
25
|
3impia |
|- ( ( Lim A /\ B C_ A /\ B ~< ( cf ` A ) ) -> U. B e. A ) |