| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmeq |  |-  ( x = z -> dom x = dom z ) | 
						
							| 2 | 1 | fveq2d |  |-  ( x = z -> ( h ` dom x ) = ( h ` dom z ) ) | 
						
							| 3 |  | fveq2 |  |-  ( n = m -> ( x ` n ) = ( x ` m ) ) | 
						
							| 4 |  | suceq |  |-  ( ( x ` n ) = ( x ` m ) -> suc ( x ` n ) = suc ( x ` m ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( n = m -> suc ( x ` n ) = suc ( x ` m ) ) | 
						
							| 6 | 5 | cbviunv |  |-  U_ n e. dom x suc ( x ` n ) = U_ m e. dom x suc ( x ` m ) | 
						
							| 7 |  | fveq1 |  |-  ( x = z -> ( x ` m ) = ( z ` m ) ) | 
						
							| 8 |  | suceq |  |-  ( ( x ` m ) = ( z ` m ) -> suc ( x ` m ) = suc ( z ` m ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( x = z -> suc ( x ` m ) = suc ( z ` m ) ) | 
						
							| 10 | 1 9 | iuneq12d |  |-  ( x = z -> U_ m e. dom x suc ( x ` m ) = U_ m e. dom z suc ( z ` m ) ) | 
						
							| 11 | 6 10 | eqtrid |  |-  ( x = z -> U_ n e. dom x suc ( x ` n ) = U_ m e. dom z suc ( z ` m ) ) | 
						
							| 12 | 2 11 | uneq12d |  |-  ( x = z -> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) = ( ( h ` dom z ) u. U_ m e. dom z suc ( z ` m ) ) ) | 
						
							| 13 | 12 | cbvmptv |  |-  ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) = ( z e. _V |-> ( ( h ` dom z ) u. U_ m e. dom z suc ( z ` m ) ) ) | 
						
							| 14 |  | eqid |  |-  ( recs ( ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) ) |` ( cf ` A ) ) = ( recs ( ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) ) |` ( cf ` A ) ) | 
						
							| 15 | 13 14 | cfsmolem |  |-  ( A e. On -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) |