Step |
Hyp |
Ref |
Expression |
1 |
|
dmeq |
|- ( x = z -> dom x = dom z ) |
2 |
1
|
fveq2d |
|- ( x = z -> ( h ` dom x ) = ( h ` dom z ) ) |
3 |
|
fveq2 |
|- ( n = m -> ( x ` n ) = ( x ` m ) ) |
4 |
|
suceq |
|- ( ( x ` n ) = ( x ` m ) -> suc ( x ` n ) = suc ( x ` m ) ) |
5 |
3 4
|
syl |
|- ( n = m -> suc ( x ` n ) = suc ( x ` m ) ) |
6 |
5
|
cbviunv |
|- U_ n e. dom x suc ( x ` n ) = U_ m e. dom x suc ( x ` m ) |
7 |
|
fveq1 |
|- ( x = z -> ( x ` m ) = ( z ` m ) ) |
8 |
|
suceq |
|- ( ( x ` m ) = ( z ` m ) -> suc ( x ` m ) = suc ( z ` m ) ) |
9 |
7 8
|
syl |
|- ( x = z -> suc ( x ` m ) = suc ( z ` m ) ) |
10 |
1 9
|
iuneq12d |
|- ( x = z -> U_ m e. dom x suc ( x ` m ) = U_ m e. dom z suc ( z ` m ) ) |
11 |
6 10
|
eqtrid |
|- ( x = z -> U_ n e. dom x suc ( x ` n ) = U_ m e. dom z suc ( z ` m ) ) |
12 |
2 11
|
uneq12d |
|- ( x = z -> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) = ( ( h ` dom z ) u. U_ m e. dom z suc ( z ` m ) ) ) |
13 |
12
|
cbvmptv |
|- ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) = ( z e. _V |-> ( ( h ` dom z ) u. U_ m e. dom z suc ( z ` m ) ) ) |
14 |
|
eqid |
|- ( recs ( ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) ) |` ( cf ` A ) ) = ( recs ( ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) ) |` ( cf ` A ) ) |
15 |
13 14
|
cfsmolem |
|- ( A e. On -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) |