| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cfss.1 |
|- A e. _V |
| 2 |
1
|
cflim3 |
|- ( Lim A -> ( cf ` A ) = |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) ) |
| 3 |
|
fvex |
|- ( card ` x ) e. _V |
| 4 |
3
|
dfiin2 |
|- |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) = |^| { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } |
| 5 |
|
cardon |
|- ( card ` x ) e. On |
| 6 |
|
eleq1 |
|- ( y = ( card ` x ) -> ( y e. On <-> ( card ` x ) e. On ) ) |
| 7 |
5 6
|
mpbiri |
|- ( y = ( card ` x ) -> y e. On ) |
| 8 |
7
|
rexlimivw |
|- ( E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) -> y e. On ) |
| 9 |
8
|
abssi |
|- { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } C_ On |
| 10 |
|
limuni |
|- ( Lim A -> A = U. A ) |
| 11 |
10
|
eqcomd |
|- ( Lim A -> U. A = A ) |
| 12 |
|
fveq2 |
|- ( x = A -> ( card ` x ) = ( card ` A ) ) |
| 13 |
12
|
eqcomd |
|- ( x = A -> ( card ` A ) = ( card ` x ) ) |
| 14 |
13
|
biantrud |
|- ( x = A -> ( U. A = A <-> ( U. A = A /\ ( card ` A ) = ( card ` x ) ) ) ) |
| 15 |
|
unieq |
|- ( x = A -> U. x = U. A ) |
| 16 |
15
|
eqeq1d |
|- ( x = A -> ( U. x = A <-> U. A = A ) ) |
| 17 |
1
|
pwid |
|- A e. ~P A |
| 18 |
|
eleq1 |
|- ( x = A -> ( x e. ~P A <-> A e. ~P A ) ) |
| 19 |
17 18
|
mpbiri |
|- ( x = A -> x e. ~P A ) |
| 20 |
19
|
biantrurd |
|- ( x = A -> ( U. x = A <-> ( x e. ~P A /\ U. x = A ) ) ) |
| 21 |
16 20
|
bitr3d |
|- ( x = A -> ( U. A = A <-> ( x e. ~P A /\ U. x = A ) ) ) |
| 22 |
21
|
anbi1d |
|- ( x = A -> ( ( U. A = A /\ ( card ` A ) = ( card ` x ) ) <-> ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) ) |
| 23 |
14 22
|
bitr2d |
|- ( x = A -> ( ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) <-> U. A = A ) ) |
| 24 |
1 23
|
spcev |
|- ( U. A = A -> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 25 |
11 24
|
syl |
|- ( Lim A -> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 26 |
|
df-rex |
|- ( E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) <-> E. x ( x e. { x e. ~P A | U. x = A } /\ ( card ` A ) = ( card ` x ) ) ) |
| 27 |
|
rabid |
|- ( x e. { x e. ~P A | U. x = A } <-> ( x e. ~P A /\ U. x = A ) ) |
| 28 |
27
|
anbi1i |
|- ( ( x e. { x e. ~P A | U. x = A } /\ ( card ` A ) = ( card ` x ) ) <-> ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 29 |
28
|
exbii |
|- ( E. x ( x e. { x e. ~P A | U. x = A } /\ ( card ` A ) = ( card ` x ) ) <-> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 30 |
26 29
|
bitri |
|- ( E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) <-> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 31 |
25 30
|
sylibr |
|- ( Lim A -> E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) ) |
| 32 |
|
fvex |
|- ( card ` A ) e. _V |
| 33 |
|
eqeq1 |
|- ( y = ( card ` A ) -> ( y = ( card ` x ) <-> ( card ` A ) = ( card ` x ) ) ) |
| 34 |
33
|
rexbidv |
|- ( y = ( card ` A ) -> ( E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) <-> E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) ) ) |
| 35 |
32 34
|
spcev |
|- ( E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) -> E. y E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) ) |
| 36 |
31 35
|
syl |
|- ( Lim A -> E. y E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) ) |
| 37 |
|
abn0 |
|- ( { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } =/= (/) <-> E. y E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) ) |
| 38 |
36 37
|
sylibr |
|- ( Lim A -> { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } =/= (/) ) |
| 39 |
|
onint |
|- ( ( { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } C_ On /\ { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } =/= (/) ) -> |^| { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } ) |
| 40 |
9 38 39
|
sylancr |
|- ( Lim A -> |^| { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } ) |
| 41 |
4 40
|
eqeltrid |
|- ( Lim A -> |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } ) |
| 42 |
2 41
|
eqeltrd |
|- ( Lim A -> ( cf ` A ) e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } ) |
| 43 |
|
fvex |
|- ( cf ` A ) e. _V |
| 44 |
|
eqeq1 |
|- ( y = ( cf ` A ) -> ( y = ( card ` x ) <-> ( cf ` A ) = ( card ` x ) ) ) |
| 45 |
44
|
rexbidv |
|- ( y = ( cf ` A ) -> ( E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) <-> E. x e. { x e. ~P A | U. x = A } ( cf ` A ) = ( card ` x ) ) ) |
| 46 |
43 45
|
elab |
|- ( ( cf ` A ) e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } <-> E. x e. { x e. ~P A | U. x = A } ( cf ` A ) = ( card ` x ) ) |
| 47 |
42 46
|
sylib |
|- ( Lim A -> E. x e. { x e. ~P A | U. x = A } ( cf ` A ) = ( card ` x ) ) |
| 48 |
|
df-rex |
|- ( E. x e. { x e. ~P A | U. x = A } ( cf ` A ) = ( card ` x ) <-> E. x ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) |
| 49 |
47 48
|
sylib |
|- ( Lim A -> E. x ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) |
| 50 |
|
simprl |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x e. { x e. ~P A | U. x = A } ) |
| 51 |
50 27
|
sylib |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> ( x e. ~P A /\ U. x = A ) ) |
| 52 |
51
|
simpld |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x e. ~P A ) |
| 53 |
52
|
elpwid |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x C_ A ) |
| 54 |
|
simpl |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> Lim A ) |
| 55 |
|
vex |
|- x e. _V |
| 56 |
|
limord |
|- ( Lim A -> Ord A ) |
| 57 |
|
ordsson |
|- ( Ord A -> A C_ On ) |
| 58 |
56 57
|
syl |
|- ( Lim A -> A C_ On ) |
| 59 |
|
sstr |
|- ( ( x C_ A /\ A C_ On ) -> x C_ On ) |
| 60 |
58 59
|
sylan2 |
|- ( ( x C_ A /\ Lim A ) -> x C_ On ) |
| 61 |
|
onssnum |
|- ( ( x e. _V /\ x C_ On ) -> x e. dom card ) |
| 62 |
55 60 61
|
sylancr |
|- ( ( x C_ A /\ Lim A ) -> x e. dom card ) |
| 63 |
|
cardid2 |
|- ( x e. dom card -> ( card ` x ) ~~ x ) |
| 64 |
62 63
|
syl |
|- ( ( x C_ A /\ Lim A ) -> ( card ` x ) ~~ x ) |
| 65 |
64
|
ensymd |
|- ( ( x C_ A /\ Lim A ) -> x ~~ ( card ` x ) ) |
| 66 |
53 54 65
|
syl2anc |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x ~~ ( card ` x ) ) |
| 67 |
|
simprr |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> ( cf ` A ) = ( card ` x ) ) |
| 68 |
66 67
|
breqtrrd |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x ~~ ( cf ` A ) ) |
| 69 |
51
|
simprd |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> U. x = A ) |
| 70 |
53 68 69
|
3jca |
|- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) |
| 71 |
70
|
ex |
|- ( Lim A -> ( ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) -> ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) ) |
| 72 |
71
|
eximdv |
|- ( Lim A -> ( E. x ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) -> E. x ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) ) |
| 73 |
49 72
|
mpd |
|- ( Lim A -> E. x ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) |