| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgcgrxfr.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							tgcgrxfr.m | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							tgcgrxfr.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							tgcgrxfr.r | 
							 |-  .~ = ( cgrG ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							tgcgrxfr.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 6 | 
							
								
							 | 
							tgbtwnxfr.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							tgbtwnxfr.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							tgbtwnxfr.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							tgbtwnxfr.d | 
							 |-  ( ph -> D e. P )  | 
						
						
							| 10 | 
							
								
							 | 
							tgbtwnxfr.e | 
							 |-  ( ph -> E e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							tgbtwnxfr.f | 
							 |-  ( ph -> F e. P )  | 
						
						
							| 12 | 
							
								
							 | 
							tgbtwnxfr.2 | 
							 |-  ( ph -> <" A B C "> .~ <" D E F "> )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cgr3simp1 | 
							 |-  ( ph -> ( A .- B ) = ( D .- E ) )  | 
						
						
							| 14 | 
							
								1 2 3 5 6 7 9 10 13
							 | 
							tgcgrcomlr | 
							 |-  ( ph -> ( B .- A ) = ( E .- D ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cgr3simp3 | 
							 |-  ( ph -> ( C .- A ) = ( F .- D ) )  | 
						
						
							| 16 | 
							
								1 2 3 5 8 6 11 9 15
							 | 
							tgcgrcomlr | 
							 |-  ( ph -> ( A .- C ) = ( D .- F ) )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cgr3simp2 | 
							 |-  ( ph -> ( B .- C ) = ( E .- F ) )  | 
						
						
							| 18 | 
							
								1 2 3 5 7 8 10 11 17
							 | 
							tgcgrcomlr | 
							 |-  ( ph -> ( C .- B ) = ( F .- E ) )  | 
						
						
							| 19 | 
							
								1 2 4 5 7 6 8 10 9 11 14 16 18
							 | 
							trgcgr | 
							 |-  ( ph -> <" B A C "> .~ <" E D F "> )  |