Step |
Hyp |
Ref |
Expression |
1 |
|
iscgra.p |
|- P = ( Base ` G ) |
2 |
|
iscgra.i |
|- I = ( Itv ` G ) |
3 |
|
iscgra.k |
|- K = ( hlG ` G ) |
4 |
|
iscgra.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
iscgra.a |
|- ( ph -> A e. P ) |
6 |
|
iscgra.b |
|- ( ph -> B e. P ) |
7 |
|
iscgra.c |
|- ( ph -> C e. P ) |
8 |
|
iscgra.d |
|- ( ph -> D e. P ) |
9 |
|
iscgra.e |
|- ( ph -> E e. P ) |
10 |
|
iscgra.f |
|- ( ph -> F e. P ) |
11 |
|
cgrahl1.2 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
12 |
|
cgrahl1.x |
|- ( ph -> X e. P ) |
13 |
|
cgracgr.m |
|- .- = ( dist ` G ) |
14 |
|
cgracgr.y |
|- ( ph -> Y e. P ) |
15 |
|
cgracgr.1 |
|- ( ph -> X ( K ` B ) A ) |
16 |
|
cgracgr.2 |
|- ( ph -> Y ( K ` B ) C ) |
17 |
|
cgracgr.3 |
|- ( ph -> ( B .- X ) = ( E .- D ) ) |
18 |
|
cgracgr.4 |
|- ( ph -> ( B .- Y ) = ( E .- F ) ) |
19 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
20 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> G e. TarskiG ) |
21 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> A e. P ) |
22 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> B e. P ) |
23 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> X e. P ) |
24 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
25 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x e. P ) |
26 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E e. P ) |
27 |
14
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> Y e. P ) |
28 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D e. P ) |
29 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> F e. P ) |
30 |
1 2 3 12 5 6 4 15
|
hlne2 |
|- ( ph -> A =/= B ) |
31 |
30
|
necomd |
|- ( ph -> B =/= A ) |
32 |
1 2 3 12 5 6 4 19 15
|
hlln |
|- ( ph -> X e. ( A ( LineG ` G ) B ) ) |
33 |
1 2 19 4 6 5 12 31 32
|
lncom |
|- ( ph -> X e. ( B ( LineG ` G ) A ) ) |
34 |
33
|
orcd |
|- ( ph -> ( X e. ( B ( LineG ` G ) A ) \/ B = A ) ) |
35 |
1 19 2 4 6 5 12 34
|
colrot1 |
|- ( ph -> ( B e. ( A ( LineG ` G ) X ) \/ A = X ) ) |
36 |
35
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( B e. ( A ( LineG ` G ) X ) \/ A = X ) ) |
37 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> C e. P ) |
38 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y e. P ) |
39 |
|
simpr1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> <" A B C "> ( cgrG ` G ) <" x E y "> ) |
40 |
1 13 2 24 20 21 22 37 25 26 38 39
|
cgr3simp1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( A .- B ) = ( x .- E ) ) |
41 |
17
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( B .- X ) = ( E .- D ) ) |
42 |
|
eqid |
|- ( leG ` G ) = ( leG ` G ) |
43 |
|
simpr2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x ( K ` E ) D ) |
44 |
1 2 3 25 28 26 20
|
ishlg |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x ( K ` E ) D <-> ( x =/= E /\ D =/= E /\ ( x e. ( E I D ) \/ D e. ( E I x ) ) ) ) ) |
45 |
43 44
|
mpbid |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x =/= E /\ D =/= E /\ ( x e. ( E I D ) \/ D e. ( E I x ) ) ) ) |
46 |
45
|
simp3d |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x e. ( E I D ) \/ D e. ( E I x ) ) ) |
47 |
1 2 3 12 5 6 4
|
ishlg |
|- ( ph -> ( X ( K ` B ) A <-> ( X =/= B /\ A =/= B /\ ( X e. ( B I A ) \/ A e. ( B I X ) ) ) ) ) |
48 |
15 47
|
mpbid |
|- ( ph -> ( X =/= B /\ A =/= B /\ ( X e. ( B I A ) \/ A e. ( B I X ) ) ) ) |
49 |
48
|
simp3d |
|- ( ph -> ( X e. ( B I A ) \/ A e. ( B I X ) ) ) |
50 |
49
|
orcomd |
|- ( ph -> ( A e. ( B I X ) \/ X e. ( B I A ) ) ) |
51 |
50
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( A e. ( B I X ) \/ X e. ( B I A ) ) ) |
52 |
40
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x .- E ) = ( A .- B ) ) |
53 |
1 13 2 20 25 26 21 22 52
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( E .- x ) = ( B .- A ) ) |
54 |
41
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( E .- D ) = ( B .- X ) ) |
55 |
1 13 2 42 20 26 25 28 22 22 21 23 46 51 53 54
|
tgcgrsub2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x .- D ) = ( A .- X ) ) |
56 |
55
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( A .- X ) = ( x .- D ) ) |
57 |
1 13 2 20 21 23 25 28 56
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( X .- A ) = ( D .- x ) ) |
58 |
1 13 24 20 21 22 23 25 26 28 40 41 57
|
trgcgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> <" A B X "> ( cgrG ` G ) <" x E D "> ) |
59 |
1 2 3 14 7 6 4 19 16
|
hlln |
|- ( ph -> Y e. ( C ( LineG ` G ) B ) ) |
60 |
59
|
orcd |
|- ( ph -> ( Y e. ( C ( LineG ` G ) B ) \/ C = B ) ) |
61 |
1 19 2 4 7 6 14 60
|
colrot1 |
|- ( ph -> ( C e. ( B ( LineG ` G ) Y ) \/ B = Y ) ) |
62 |
61
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( C e. ( B ( LineG ` G ) Y ) \/ B = Y ) ) |
63 |
1 13 2 24 20 21 22 37 25 26 38 39
|
cgr3simp2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( B .- C ) = ( E .- y ) ) |
64 |
1 2 3 14 7 6 4
|
ishlg |
|- ( ph -> ( Y ( K ` B ) C <-> ( Y =/= B /\ C =/= B /\ ( Y e. ( B I C ) \/ C e. ( B I Y ) ) ) ) ) |
65 |
16 64
|
mpbid |
|- ( ph -> ( Y =/= B /\ C =/= B /\ ( Y e. ( B I C ) \/ C e. ( B I Y ) ) ) ) |
66 |
65
|
simp3d |
|- ( ph -> ( Y e. ( B I C ) \/ C e. ( B I Y ) ) ) |
67 |
66
|
orcomd |
|- ( ph -> ( C e. ( B I Y ) \/ Y e. ( B I C ) ) ) |
68 |
67
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( C e. ( B I Y ) \/ Y e. ( B I C ) ) ) |
69 |
|
simpr3 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y ( K ` E ) F ) |
70 |
1 2 3 38 29 26 20
|
ishlg |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( y ( K ` E ) F <-> ( y =/= E /\ F =/= E /\ ( y e. ( E I F ) \/ F e. ( E I y ) ) ) ) ) |
71 |
69 70
|
mpbid |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( y =/= E /\ F =/= E /\ ( y e. ( E I F ) \/ F e. ( E I y ) ) ) ) |
72 |
71
|
simp3d |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( y e. ( E I F ) \/ F e. ( E I y ) ) ) |
73 |
18
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( B .- Y ) = ( E .- F ) ) |
74 |
1 13 2 42 20 22 37 27 26 26 38 29 68 72 63 73
|
tgcgrsub2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( C .- Y ) = ( y .- F ) ) |
75 |
1 13 2 20 22 27 26 29 73
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( Y .- B ) = ( F .- E ) ) |
76 |
1 13 24 20 22 37 27 26 38 29 63 74 75
|
trgcgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> <" B C Y "> ( cgrG ` G ) <" E y F "> ) |
77 |
53
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( B .- A ) = ( E .- x ) ) |
78 |
1 13 2 24 20 21 22 37 25 26 38 39
|
cgr3simp3 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( C .- A ) = ( y .- x ) ) |
79 |
1 2 3 4 5 6 7 8 9 10 11
|
cgrane2 |
|- ( ph -> B =/= C ) |
80 |
79
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> B =/= C ) |
81 |
1 19 2 20 22 37 27 24 26 38 13 21 29 25 62 76 77 78 80
|
tgfscgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( Y .- A ) = ( F .- x ) ) |
82 |
1 13 2 20 27 21 29 25 81
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( A .- Y ) = ( x .- F ) ) |
83 |
30
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> A =/= B ) |
84 |
1 19 2 20 21 22 23 24 25 26 13 27 28 29 36 58 82 73 83
|
tgfscgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( X .- Y ) = ( D .- F ) ) |
85 |
1 2 3 4 5 6 7 8 9 10
|
iscgra |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
86 |
11 85
|
mpbid |
|- ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) |
87 |
84 86
|
r19.29vva |
|- ( ph -> ( X .- Y ) = ( D .- F ) ) |