| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgracol.p |
|- P = ( Base ` G ) |
| 2 |
|
cgracol.i |
|- I = ( Itv ` G ) |
| 3 |
|
cgracol.m |
|- .- = ( dist ` G ) |
| 4 |
|
cgracol.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
cgracol.a |
|- ( ph -> A e. P ) |
| 6 |
|
cgracol.b |
|- ( ph -> B e. P ) |
| 7 |
|
cgracol.c |
|- ( ph -> C e. P ) |
| 8 |
|
cgracol.d |
|- ( ph -> D e. P ) |
| 9 |
|
cgracol.e |
|- ( ph -> E e. P ) |
| 10 |
|
cgracol.f |
|- ( ph -> F e. P ) |
| 11 |
|
cgracol.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 12 |
|
cgracol.l |
|- L = ( LineG ` G ) |
| 13 |
|
cgracol.2 |
|- ( ph -> ( C e. ( A L B ) \/ A = B ) ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> G e. TarskiG ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> A e. P ) |
| 16 |
6
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> B e. P ) |
| 17 |
7
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> C e. P ) |
| 18 |
8
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> D e. P ) |
| 19 |
9
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> E e. P ) |
| 20 |
10
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> F e. P ) |
| 21 |
11
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 22 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
| 23 |
1 2 22 4 5 6 7 8 9 10 11
|
cgrane2 |
|- ( ph -> B =/= C ) |
| 24 |
23
|
necomd |
|- ( ph -> C =/= B ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> C =/= B ) |
| 26 |
1 2 22 4 5 6 7 8 9 10 11
|
cgrane1 |
|- ( ph -> A =/= B ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> A =/= B ) |
| 28 |
4
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG ) |
| 29 |
5
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> A e. P ) |
| 30 |
7
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. P ) |
| 31 |
6
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> B e. P ) |
| 32 |
|
simpr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) ) |
| 33 |
1 3 2 28 29 30 31 32
|
tgbtwncom |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( B I A ) ) |
| 34 |
33
|
orcd |
|- ( ( ph /\ C e. ( A I B ) ) -> ( C e. ( B I A ) \/ A e. ( B I C ) ) ) |
| 35 |
25 27 34
|
3jca |
|- ( ( ph /\ C e. ( A I B ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) |
| 36 |
24
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> C =/= B ) |
| 37 |
26
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> A =/= B ) |
| 38 |
4
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> G e. TarskiG ) |
| 39 |
7
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> C e. P ) |
| 40 |
5
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. P ) |
| 41 |
6
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> B e. P ) |
| 42 |
|
simpr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) |
| 43 |
1 3 2 38 39 40 41 42
|
tgbtwncom |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( B I C ) ) |
| 44 |
43
|
olcd |
|- ( ( ph /\ A e. ( C I B ) ) -> ( C e. ( B I A ) \/ A e. ( B I C ) ) ) |
| 45 |
36 37 44
|
3jca |
|- ( ( ph /\ A e. ( C I B ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) |
| 46 |
35 45
|
jaodan |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) |
| 47 |
1 2 22 7 5 6 4
|
ishlg |
|- ( ph -> ( C ( ( hlG ` G ) ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( C ( ( hlG ` G ) ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
| 49 |
46 48
|
mpbird |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> C ( ( hlG ` G ) ` B ) A ) |
| 50 |
1 2 22 17 15 16 14 49
|
hlcomd |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> A ( ( hlG ` G ) ` B ) C ) |
| 51 |
1 2 3 14 15 16 17 18 19 20 21 22 50
|
cgrahl |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> D ( ( hlG ` G ) ` E ) F ) |
| 52 |
1 2 22 18 20 19 14
|
ishlg |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D ( ( hlG ` G ) ` E ) F <-> ( D =/= E /\ F =/= E /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) ) ) |
| 53 |
51 52
|
mpbid |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D =/= E /\ F =/= E /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) ) |
| 54 |
53
|
simp3d |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D e. ( E I F ) \/ F e. ( E I D ) ) ) |
| 55 |
4
|
adantr |
|- ( ( ph /\ D e. ( E I F ) ) -> G e. TarskiG ) |
| 56 |
9
|
adantr |
|- ( ( ph /\ D e. ( E I F ) ) -> E e. P ) |
| 57 |
8
|
adantr |
|- ( ( ph /\ D e. ( E I F ) ) -> D e. P ) |
| 58 |
10
|
adantr |
|- ( ( ph /\ D e. ( E I F ) ) -> F e. P ) |
| 59 |
|
simpr |
|- ( ( ph /\ D e. ( E I F ) ) -> D e. ( E I F ) ) |
| 60 |
1 3 2 55 56 57 58 59
|
tgbtwncom |
|- ( ( ph /\ D e. ( E I F ) ) -> D e. ( F I E ) ) |
| 61 |
60
|
olcd |
|- ( ( ph /\ D e. ( E I F ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) |
| 62 |
4
|
adantr |
|- ( ( ph /\ F e. ( E I D ) ) -> G e. TarskiG ) |
| 63 |
9
|
adantr |
|- ( ( ph /\ F e. ( E I D ) ) -> E e. P ) |
| 64 |
10
|
adantr |
|- ( ( ph /\ F e. ( E I D ) ) -> F e. P ) |
| 65 |
8
|
adantr |
|- ( ( ph /\ F e. ( E I D ) ) -> D e. P ) |
| 66 |
|
simpr |
|- ( ( ph /\ F e. ( E I D ) ) -> F e. ( E I D ) ) |
| 67 |
1 3 2 62 63 64 65 66
|
tgbtwncom |
|- ( ( ph /\ F e. ( E I D ) ) -> F e. ( D I E ) ) |
| 68 |
67
|
orcd |
|- ( ( ph /\ F e. ( E I D ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) |
| 69 |
61 68
|
jaodan |
|- ( ( ph /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) |
| 70 |
54 69
|
syldan |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) |
| 71 |
70
|
orcd |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( ( F e. ( D I E ) \/ D e. ( F I E ) ) \/ E e. ( D I F ) ) ) |
| 72 |
|
df-3or |
|- ( ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) <-> ( ( F e. ( D I E ) \/ D e. ( F I E ) ) \/ E e. ( D I F ) ) ) |
| 73 |
71 72
|
sylibr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) |
| 74 |
1 2 4 22 5 6 7 8 9 10 11
|
cgracom |
|- ( ph -> <" D E F "> ( cgrA ` G ) <" A B C "> ) |
| 75 |
1 2 22 4 8 9 10 5 6 7 74
|
cgrane1 |
|- ( ph -> D =/= E ) |
| 76 |
1 12 2 4 8 9 75 10
|
tgellng |
|- ( ph -> ( F e. ( D L E ) <-> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) ) |
| 77 |
76
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D L E ) <-> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) ) |
| 78 |
73 77
|
mpbird |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> F e. ( D L E ) ) |
| 79 |
78
|
orcd |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D L E ) \/ D = E ) ) |
| 80 |
4
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) |
| 81 |
8
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> D e. P ) |
| 82 |
9
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. P ) |
| 83 |
10
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> F e. P ) |
| 84 |
5
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> A e. P ) |
| 85 |
6
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. P ) |
| 86 |
7
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> C e. P ) |
| 87 |
11
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 88 |
|
simpr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) |
| 89 |
1 2 3 80 84 85 86 81 82 83 87 88
|
cgrabtwn |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. ( D I F ) ) |
| 90 |
1 12 2 80 81 82 83 89
|
btwncolg3 |
|- ( ( ph /\ B e. ( A I C ) ) -> ( F e. ( D L E ) \/ D = E ) ) |
| 91 |
26
|
neneqd |
|- ( ph -> -. A = B ) |
| 92 |
13
|
orcomd |
|- ( ph -> ( A = B \/ C e. ( A L B ) ) ) |
| 93 |
92
|
ord |
|- ( ph -> ( -. A = B -> C e. ( A L B ) ) ) |
| 94 |
91 93
|
mpd |
|- ( ph -> C e. ( A L B ) ) |
| 95 |
1 12 2 4 5 6 26 7
|
tgellng |
|- ( ph -> ( C e. ( A L B ) <-> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) ) |
| 96 |
94 95
|
mpbid |
|- ( ph -> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) |
| 97 |
|
df-3or |
|- ( ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) <-> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) |
| 98 |
96 97
|
sylib |
|- ( ph -> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) |
| 99 |
79 90 98
|
mpjaodan |
|- ( ph -> ( F e. ( D L E ) \/ D = E ) ) |