Step |
Hyp |
Ref |
Expression |
1 |
|
cgraid.p |
|- P = ( Base ` G ) |
2 |
|
cgraid.i |
|- I = ( Itv ` G ) |
3 |
|
cgraid.g |
|- ( ph -> G e. TarskiG ) |
4 |
|
cgraid.k |
|- K = ( hlG ` G ) |
5 |
|
cgraid.a |
|- ( ph -> A e. P ) |
6 |
|
cgraid.b |
|- ( ph -> B e. P ) |
7 |
|
cgraid.c |
|- ( ph -> C e. P ) |
8 |
|
cgracom.d |
|- ( ph -> D e. P ) |
9 |
|
cgracom.e |
|- ( ph -> E e. P ) |
10 |
|
cgracom.f |
|- ( ph -> F e. P ) |
11 |
|
cgracom.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
12 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
13 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
14 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> G e. TarskiG ) |
15 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> D e. P ) |
16 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> E e. P ) |
17 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> F e. P ) |
18 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> x e. P ) |
19 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> B e. P ) |
20 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> y e. P ) |
21 |
|
simprlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) |
22 |
21
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( E ( dist ` G ) D ) = ( B ( dist ` G ) x ) ) |
23 |
1 12 2 14 16 15 19 18 22
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( D ( dist ` G ) E ) = ( x ( dist ` G ) B ) ) |
24 |
|
simprrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) |
25 |
24
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( E ( dist ` G ) F ) = ( B ( dist ` G ) y ) ) |
26 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> A e. P ) |
27 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> C e. P ) |
28 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
29 |
|
simprll |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> x ( K ` B ) A ) |
30 |
|
simprrl |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> y ( K ` B ) C ) |
31 |
1 2 4 14 26 19 27 15 16 17 28 18 12 20 29 30 21 24
|
cgracgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( x ( dist ` G ) y ) = ( D ( dist ` G ) F ) ) |
32 |
31
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( D ( dist ` G ) F ) = ( x ( dist ` G ) y ) ) |
33 |
1 12 2 14 15 17 18 20 32
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( F ( dist ` G ) D ) = ( y ( dist ` G ) x ) ) |
34 |
1 12 13 14 15 16 17 18 19 20 23 25 33
|
trgcgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> <" D E F "> ( cgrG ` G ) <" x B y "> ) |
35 |
34 29 30
|
3jca |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( <" D E F "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) A /\ y ( K ` B ) C ) ) |
36 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane1 |
|- ( ph -> A =/= B ) |
37 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane3 |
|- ( ph -> E =/= D ) |
38 |
1 2 4 6 9 8 3 5 12 36 37
|
hlcgrex |
|- ( ph -> E. x e. P ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) ) |
39 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane2 |
|- ( ph -> B =/= C ) |
40 |
39
|
necomd |
|- ( ph -> C =/= B ) |
41 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane4 |
|- ( ph -> E =/= F ) |
42 |
1 2 4 6 9 10 3 7 12 40 41
|
hlcgrex |
|- ( ph -> E. y e. P ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) |
43 |
|
reeanv |
|- ( E. x e. P E. y e. P ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) <-> ( E. x e. P ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ E. y e. P ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) |
44 |
38 42 43
|
sylanbrc |
|- ( ph -> E. x e. P E. y e. P ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) |
45 |
35 44
|
reximddv2 |
|- ( ph -> E. x e. P E. y e. P ( <" D E F "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) A /\ y ( K ` B ) C ) ) |
46 |
1 2 4 3 8 9 10 5 6 7
|
iscgra |
|- ( ph -> ( <" D E F "> ( cgrA ` G ) <" A B C "> <-> E. x e. P E. y e. P ( <" D E F "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) A /\ y ( K ` B ) C ) ) ) |
47 |
45 46
|
mpbird |
|- ( ph -> <" D E F "> ( cgrA ` G ) <" A B C "> ) |