Step |
Hyp |
Ref |
Expression |
1 |
|
cgracol.p |
|- P = ( Base ` G ) |
2 |
|
cgracol.i |
|- I = ( Itv ` G ) |
3 |
|
cgracol.m |
|- .- = ( dist ` G ) |
4 |
|
cgracol.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
cgracol.a |
|- ( ph -> A e. P ) |
6 |
|
cgracol.b |
|- ( ph -> B e. P ) |
7 |
|
cgracol.c |
|- ( ph -> C e. P ) |
8 |
|
cgracol.d |
|- ( ph -> D e. P ) |
9 |
|
cgracol.e |
|- ( ph -> E e. P ) |
10 |
|
cgracol.f |
|- ( ph -> F e. P ) |
11 |
|
cgracol.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
12 |
|
cgrahl.k |
|- K = ( hlG ` G ) |
13 |
|
cgrahl.2 |
|- ( ph -> A ( K ` B ) C ) |
14 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D e. P ) |
15 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y e. P ) |
16 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> F e. P ) |
17 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> G e. TarskiG ) |
18 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E e. P ) |
19 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x e. P ) |
20 |
|
simpr2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x ( K ` E ) D ) |
21 |
1 2 12 19 14 18 17 20
|
hlcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D ( K ` E ) x ) |
22 |
1 2 12 19 14 18 17 20
|
hlne1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x =/= E ) |
23 |
|
simpr3 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y ( K ` E ) F ) |
24 |
1 2 12 15 16 18 17 23
|
hlne1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y =/= E ) |
25 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
26 |
17
|
adantr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> G e. TarskiG ) |
27 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> B e. P ) |
28 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> A e. P ) |
29 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> C e. P ) |
30 |
18
|
adantr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> E e. P ) |
31 |
19
|
adantr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> x e. P ) |
32 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> y e. P ) |
33 |
|
simplr1 |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> <" A B C "> ( cgrG ` G ) <" x E y "> ) |
34 |
1 3 2 25 26 28 27 29 31 30 32 33
|
cgr3swap12 |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> <" B A C "> ( cgrG ` G ) <" E x y "> ) |
35 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> A e. ( B I C ) ) |
36 |
1 3 2 25 26 27 28 29 30 31 32 34 35
|
tgbtwnxfr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> x e. ( E I y ) ) |
37 |
36
|
orcd |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> ( x e. ( E I y ) \/ y e. ( E I x ) ) ) |
38 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> G e. TarskiG ) |
39 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> B e. P ) |
40 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> C e. P ) |
41 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> A e. P ) |
42 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> E e. P ) |
43 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> y e. P ) |
44 |
19
|
adantr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> x e. P ) |
45 |
|
simplr1 |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> <" A B C "> ( cgrG ` G ) <" x E y "> ) |
46 |
1 3 2 25 38 41 39 40 44 42 43 45
|
cgr3rotl |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> <" B C A "> ( cgrG ` G ) <" E y x "> ) |
47 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> C e. ( B I A ) ) |
48 |
1 3 2 25 38 39 40 41 42 43 44 46 47
|
tgbtwnxfr |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> y e. ( E I x ) ) |
49 |
48
|
olcd |
|- ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> ( x e. ( E I y ) \/ y e. ( E I x ) ) ) |
50 |
1 2 12 5 7 6 4
|
ishlg |
|- ( ph -> ( A ( K ` B ) C <-> ( A =/= B /\ C =/= B /\ ( A e. ( B I C ) \/ C e. ( B I A ) ) ) ) ) |
51 |
13 50
|
mpbid |
|- ( ph -> ( A =/= B /\ C =/= B /\ ( A e. ( B I C ) \/ C e. ( B I A ) ) ) ) |
52 |
51
|
simp3d |
|- ( ph -> ( A e. ( B I C ) \/ C e. ( B I A ) ) ) |
53 |
52
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( A e. ( B I C ) \/ C e. ( B I A ) ) ) |
54 |
37 49 53
|
mpjaodan |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x e. ( E I y ) \/ y e. ( E I x ) ) ) |
55 |
1 2 12 19 15 18 17
|
ishlg |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x ( K ` E ) y <-> ( x =/= E /\ y =/= E /\ ( x e. ( E I y ) \/ y e. ( E I x ) ) ) ) ) |
56 |
22 24 54 55
|
mpbir3and |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x ( K ` E ) y ) |
57 |
1 2 12 14 19 15 17 18 21 56
|
hltr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D ( K ` E ) y ) |
58 |
1 2 12 14 15 16 17 18 57 23
|
hltr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D ( K ` E ) F ) |
59 |
1 2 12 4 5 6 7 8 9 10
|
iscgra |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) |
60 |
11 59
|
mpbid |
|- ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) |
61 |
58 60
|
r19.29vva |
|- ( ph -> D ( K ` E ) F ) |