Description: Angle congruence is reflexive. Theorem 11.6 of Schwabhauser p. 96. (Contributed by Thierry Arnoux, 31-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cgraid.p | |- P = ( Base ` G ) |
|
cgraid.i | |- I = ( Itv ` G ) |
||
cgraid.g | |- ( ph -> G e. TarskiG ) |
||
cgraid.k | |- K = ( hlG ` G ) |
||
cgraid.a | |- ( ph -> A e. P ) |
||
cgraid.b | |- ( ph -> B e. P ) |
||
cgraid.c | |- ( ph -> C e. P ) |
||
cgraid.1 | |- ( ph -> A =/= B ) |
||
cgraid.2 | |- ( ph -> B =/= C ) |
||
Assertion | cgraid | |- ( ph -> <" A B C "> ( cgrA ` G ) <" A B C "> ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgraid.p | |- P = ( Base ` G ) |
|
2 | cgraid.i | |- I = ( Itv ` G ) |
|
3 | cgraid.g | |- ( ph -> G e. TarskiG ) |
|
4 | cgraid.k | |- K = ( hlG ` G ) |
|
5 | cgraid.a | |- ( ph -> A e. P ) |
|
6 | cgraid.b | |- ( ph -> B e. P ) |
|
7 | cgraid.c | |- ( ph -> C e. P ) |
|
8 | cgraid.1 | |- ( ph -> A =/= B ) |
|
9 | cgraid.2 | |- ( ph -> B =/= C ) |
|
10 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
11 | eqid | |- ( cgrG ` G ) = ( cgrG ` G ) |
|
12 | 1 10 2 11 3 5 6 7 | cgr3id | |- ( ph -> <" A B C "> ( cgrG ` G ) <" A B C "> ) |
13 | 1 2 4 5 5 6 3 8 | hlid | |- ( ph -> A ( K ` B ) A ) |
14 | 9 | necomd | |- ( ph -> C =/= B ) |
15 | 1 2 4 7 5 6 3 14 | hlid | |- ( ph -> C ( K ` B ) C ) |
16 | 1 2 4 3 5 6 7 5 6 7 5 7 12 13 15 | iscgrad | |- ( ph -> <" A B C "> ( cgrA ` G ) <" A B C "> ) |