| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgraid.p |
|- P = ( Base ` G ) |
| 2 |
|
cgraid.i |
|- I = ( Itv ` G ) |
| 3 |
|
cgraid.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
cgraid.k |
|- K = ( hlG ` G ) |
| 5 |
|
cgraid.a |
|- ( ph -> A e. P ) |
| 6 |
|
cgraid.b |
|- ( ph -> B e. P ) |
| 7 |
|
cgraid.c |
|- ( ph -> C e. P ) |
| 8 |
|
cgraid.1 |
|- ( ph -> A =/= B ) |
| 9 |
|
cgraid.2 |
|- ( ph -> B =/= C ) |
| 10 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 11 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 12 |
1 10 2 11 3 5 6 7
|
cgr3id |
|- ( ph -> <" A B C "> ( cgrG ` G ) <" A B C "> ) |
| 13 |
1 2 4 5 5 6 3 8
|
hlid |
|- ( ph -> A ( K ` B ) A ) |
| 14 |
9
|
necomd |
|- ( ph -> C =/= B ) |
| 15 |
1 2 4 7 5 6 3 14
|
hlid |
|- ( ph -> C ( K ` B ) C ) |
| 16 |
1 2 4 3 5 6 7 5 6 7 5 7 12 13 15
|
iscgrad |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" A B C "> ) |