Metamath Proof Explorer


Theorem cgraid

Description: Angle congruence is reflexive. Theorem 11.6 of Schwabhauser p. 96. (Contributed by Thierry Arnoux, 31-Jul-2020)

Ref Expression
Hypotheses cgraid.p
|- P = ( Base ` G )
cgraid.i
|- I = ( Itv ` G )
cgraid.g
|- ( ph -> G e. TarskiG )
cgraid.k
|- K = ( hlG ` G )
cgraid.a
|- ( ph -> A e. P )
cgraid.b
|- ( ph -> B e. P )
cgraid.c
|- ( ph -> C e. P )
cgraid.1
|- ( ph -> A =/= B )
cgraid.2
|- ( ph -> B =/= C )
Assertion cgraid
|- ( ph -> <" A B C "> ( cgrA ` G ) <" A B C "> )

Proof

Step Hyp Ref Expression
1 cgraid.p
 |-  P = ( Base ` G )
2 cgraid.i
 |-  I = ( Itv ` G )
3 cgraid.g
 |-  ( ph -> G e. TarskiG )
4 cgraid.k
 |-  K = ( hlG ` G )
5 cgraid.a
 |-  ( ph -> A e. P )
6 cgraid.b
 |-  ( ph -> B e. P )
7 cgraid.c
 |-  ( ph -> C e. P )
8 cgraid.1
 |-  ( ph -> A =/= B )
9 cgraid.2
 |-  ( ph -> B =/= C )
10 eqid
 |-  ( dist ` G ) = ( dist ` G )
11 eqid
 |-  ( cgrG ` G ) = ( cgrG ` G )
12 1 10 2 11 3 5 6 7 cgr3id
 |-  ( ph -> <" A B C "> ( cgrG ` G ) <" A B C "> )
13 1 2 4 5 5 6 3 8 hlid
 |-  ( ph -> A ( K ` B ) A )
14 9 necomd
 |-  ( ph -> C =/= B )
15 1 2 4 7 5 6 3 14 hlid
 |-  ( ph -> C ( K ` B ) C )
16 1 2 4 3 5 6 7 5 6 7 5 7 12 13 15 iscgrad
 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" A B C "> )