| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgracol.p |
|- P = ( Base ` G ) |
| 2 |
|
cgracol.i |
|- I = ( Itv ` G ) |
| 3 |
|
cgracol.m |
|- .- = ( dist ` G ) |
| 4 |
|
cgracol.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
cgracol.a |
|- ( ph -> A e. P ) |
| 6 |
|
cgracol.b |
|- ( ph -> B e. P ) |
| 7 |
|
cgracol.c |
|- ( ph -> C e. P ) |
| 8 |
|
cgracol.d |
|- ( ph -> D e. P ) |
| 9 |
|
cgracol.e |
|- ( ph -> E e. P ) |
| 10 |
|
cgracol.f |
|- ( ph -> F e. P ) |
| 11 |
|
cgracol.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 12 |
|
cgrancol.l |
|- L = ( LineG ` G ) |
| 13 |
|
cgrancol.2 |
|- ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> G e. TarskiG ) |
| 15 |
8
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> D e. P ) |
| 16 |
9
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> E e. P ) |
| 17 |
10
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> F e. P ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> A e. P ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> B e. P ) |
| 20 |
7
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> C e. P ) |
| 21 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
| 22 |
11
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 23 |
1 2 14 21 18 19 20 15 16 17 22
|
cgracom |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> <" D E F "> ( cgrA ` G ) <" A B C "> ) |
| 24 |
|
simpr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> ( F e. ( D L E ) \/ D = E ) ) |
| 25 |
1 2 3 14 15 16 17 18 19 20 23 12 24
|
cgracol |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> ( C e. ( A L B ) \/ A = B ) ) |
| 26 |
13 25
|
mtand |
|- ( ph -> -. ( F e. ( D L E ) \/ D = E ) ) |