| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscgra.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							iscgra.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							iscgra.k | 
							 |-  K = ( hlG ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							iscgra.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							iscgra.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							iscgra.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							iscgra.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							iscgra.d | 
							 |-  ( ph -> D e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							iscgra.e | 
							 |-  ( ph -> E e. P )  | 
						
						
							| 10 | 
							
								
							 | 
							iscgra.f | 
							 |-  ( ph -> F e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							cgrahl1.2 | 
							 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( dist ` G ) = ( dist ` G )  | 
						
						
							| 13 | 
							
								4
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> G e. TarskiG )  | 
						
						
							| 14 | 
							
								9
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E e. P )  | 
						
						
							| 15 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y e. P )  | 
						
						
							| 16 | 
							
								6
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> B e. P )  | 
						
						
							| 17 | 
							
								7
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> C e. P )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  ( cgrG ` G ) = ( cgrG ` G )  | 
						
						
							| 19 | 
							
								5
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> A e. P )  | 
						
						
							| 20 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x e. P )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> <" A B C "> ( cgrG ` G ) <" x E y "> )  | 
						
						
							| 22 | 
							
								1 12 2 18 13 19 16 17 20 14 15 21
							 | 
							cgr3simp2 | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) y ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							eqcomd | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( E ( dist ` G ) y ) = ( B ( dist ` G ) C ) )  | 
						
						
							| 24 | 
							
								10
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> F e. P )  | 
						
						
							| 25 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y ( K ` E ) F )  | 
						
						
							| 26 | 
							
								1 2 3 15 24 14 13 25
							 | 
							hlne1 | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y =/= E )  | 
						
						
							| 27 | 
							
								26
							 | 
							necomd | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E =/= y )  | 
						
						
							| 28 | 
							
								1 12 2 13 14 15 16 17 23 27
							 | 
							tgcgrneq | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> B =/= C )  | 
						
						
							| 29 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							iscgra | 
							 |-  ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) )  | 
						
						
							| 30 | 
							
								11 29
							 | 
							mpbid | 
							 |-  ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							r19.29vva | 
							 |-  ( ph -> B =/= C )  |