| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cgraid.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							cgraid.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							cgraid.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 4 | 
							
								
							 | 
							cgraid.k | 
							 |-  K = ( hlG ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							cgraid.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							cgraid.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							cgraid.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							cgraid.1 | 
							 |-  ( ph -> A =/= B )  | 
						
						
							| 9 | 
							
								
							 | 
							cgraid.2 | 
							 |-  ( ph -> B =/= C )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( dist ` G ) = ( dist ` G )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( cgrG ` G ) = ( cgrG ` G )  | 
						
						
							| 12 | 
							
								3
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> G e. TarskiG )  | 
						
						
							| 13 | 
							
								5
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> A e. P )  | 
						
						
							| 14 | 
							
								6
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> B e. P )  | 
						
						
							| 15 | 
							
								7
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> C e. P )  | 
						
						
							| 16 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x e. P )  | 
						
						
							| 17 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> y e. P )  | 
						
						
							| 18 | 
							
								
							 | 
							simprlr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) )  | 
						
						
							| 19 | 
							
								1 10 2 12 14 16 14 13 18
							 | 
							tgcgrcomlr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x ( dist ` G ) B ) = ( A ( dist ` G ) B ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eqcomd | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( A ( dist ` G ) B ) = ( x ( dist ` G ) B ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simprrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqcomd | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) C ) = ( B ( dist ` G ) y ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  ( LineG ` G ) = ( LineG ` G )  | 
						
						
							| 24 | 
							
								
							 | 
							simprll | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x ( K ` B ) C )  | 
						
						
							| 25 | 
							
								1 2 4 16 15 14 12 23 24
							 | 
							hlln | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x e. ( C ( LineG ` G ) B ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							orcd | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x e. ( C ( LineG ` G ) B ) \/ C = B ) )  | 
						
						
							| 27 | 
							
								1 23 2 12 15 14 16 26
							 | 
							colrot1 | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C e. ( B ( LineG ` G ) x ) \/ B = x ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							 |-  ( leG ` G ) = ( leG ` G )  | 
						
						
							| 29 | 
							
								1 2 4 16 15 14 12
							 | 
							ishlg | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x ( K ` B ) C <-> ( x =/= B /\ C =/= B /\ ( x e. ( B I C ) \/ C e. ( B I x ) ) ) ) )  | 
						
						
							| 30 | 
							
								24 29
							 | 
							mpbid | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x =/= B /\ C =/= B /\ ( x e. ( B I C ) \/ C e. ( B I x ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							simp3d | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x e. ( B I C ) \/ C e. ( B I x ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							orcomd | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C e. ( B I x ) \/ x e. ( B I C ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simprrl | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> y ( K ` B ) A )  | 
						
						
							| 34 | 
							
								1 2 4 17 13 14 12
							 | 
							ishlg | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( y ( K ` B ) A <-> ( y =/= B /\ A =/= B /\ ( y e. ( B I A ) \/ A e. ( B I y ) ) ) ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							mpbid | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( y =/= B /\ A =/= B /\ ( y e. ( B I A ) \/ A e. ( B I y ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							simp3d | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( y e. ( B I A ) \/ A e. ( B I y ) ) )  | 
						
						
							| 37 | 
							
								1 10 2 28 12 14 15 16 14 14 17 13 32 36 22 18
							 | 
							tgcgrsub2 | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C ( dist ` G ) x ) = ( y ( dist ` G ) A ) )  | 
						
						
							| 38 | 
							
								1 10 11 12 14 15 16 14 17 13 22 37 19
							 | 
							trgcgr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> <" B C x "> ( cgrG ` G ) <" B y A "> )  | 
						
						
							| 39 | 
							
								1 10 2 12 15 17
							 | 
							axtgcgrrflx | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C ( dist ` G ) y ) = ( y ( dist ` G ) C ) )  | 
						
						
							| 40 | 
							
								9
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> B =/= C )  | 
						
						
							| 41 | 
							
								1 23 2 12 14 15 16 11 14 17 10 17 13 15 27 38 21 39 40
							 | 
							tgfscgr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x ( dist ` G ) y ) = ( A ( dist ` G ) C ) )  | 
						
						
							| 42 | 
							
								1 10 2 12 16 17 13 15 41
							 | 
							tgcgrcomlr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( y ( dist ` G ) x ) = ( C ( dist ` G ) A ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							eqcomd | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C ( dist ` G ) A ) = ( y ( dist ` G ) x ) )  | 
						
						
							| 44 | 
							
								1 10 11 12 13 14 15 16 14 17 20 22 43
							 | 
							trgcgr | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> <" A B C "> ( cgrG ` G ) <" x B y "> )  | 
						
						
							| 45 | 
							
								44 24 33
							 | 
							3jca | 
							 |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( <" A B C "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) C /\ y ( K ` B ) A ) )  | 
						
						
							| 46 | 
							
								9
							 | 
							necomd | 
							 |-  ( ph -> C =/= B )  | 
						
						
							| 47 | 
							
								8
							 | 
							necomd | 
							 |-  ( ph -> B =/= A )  | 
						
						
							| 48 | 
							
								1 2 4 6 6 5 3 7 10 46 47
							 | 
							hlcgrex | 
							 |-  ( ph -> E. x e. P ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) )  | 
						
						
							| 49 | 
							
								1 2 4 6 6 7 3 5 10 8 9
							 | 
							hlcgrex | 
							 |-  ( ph -> E. y e. P ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							reeanv | 
							 |-  ( E. x e. P E. y e. P ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) <-> ( E. x e. P ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ E. y e. P ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) )  | 
						
						
							| 51 | 
							
								48 49 50
							 | 
							sylanbrc | 
							 |-  ( ph -> E. x e. P E. y e. P ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) )  | 
						
						
							| 52 | 
							
								45 51
							 | 
							reximddv2 | 
							 |-  ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) C /\ y ( K ` B ) A ) )  | 
						
						
							| 53 | 
							
								1 2 4 3 5 6 7 7 6 5
							 | 
							iscgra | 
							 |-  ( ph -> ( <" A B C "> ( cgrA ` G ) <" C B A "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) C /\ y ( K ` B ) A ) ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							mpbird | 
							 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" C B A "> )  |