Step |
Hyp |
Ref |
Expression |
1 |
|
cgracol.p |
|- P = ( Base ` G ) |
2 |
|
cgracol.i |
|- I = ( Itv ` G ) |
3 |
|
cgracol.m |
|- .- = ( dist ` G ) |
4 |
|
cgracol.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
cgracol.a |
|- ( ph -> A e. P ) |
6 |
|
cgracol.b |
|- ( ph -> B e. P ) |
7 |
|
cgracol.c |
|- ( ph -> C e. P ) |
8 |
|
cgracol.d |
|- ( ph -> D e. P ) |
9 |
|
cgracol.e |
|- ( ph -> E e. P ) |
10 |
|
cgracol.f |
|- ( ph -> F e. P ) |
11 |
|
cgracol.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
12 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
13 |
1 2 12 4 5 6 7 8 9 10 11
|
cgrane2 |
|- ( ph -> B =/= C ) |
14 |
13
|
necomd |
|- ( ph -> C =/= B ) |
15 |
1 2 12 4 5 6 7 8 9 10 11
|
cgrane1 |
|- ( ph -> A =/= B ) |
16 |
15
|
necomd |
|- ( ph -> B =/= A ) |
17 |
1 2 4 12 7 6 5 14 16
|
cgraswap |
|- ( ph -> <" C B A "> ( cgrA ` G ) <" A B C "> ) |
18 |
1 2 4 12 7 6 5 5 6 7 17 8 9 10 11
|
cgratr |
|- ( ph -> <" C B A "> ( cgrA ` G ) <" D E F "> ) |
19 |
1 2 12 4 5 6 7 8 9 10 11
|
cgrane3 |
|- ( ph -> E =/= D ) |
20 |
19
|
necomd |
|- ( ph -> D =/= E ) |
21 |
1 2 12 4 5 6 7 8 9 10 11
|
cgrane4 |
|- ( ph -> E =/= F ) |
22 |
1 2 4 12 8 9 10 20 21
|
cgraswap |
|- ( ph -> <" D E F "> ( cgrA ` G ) <" F E D "> ) |
23 |
1 2 4 12 7 6 5 8 9 10 18 10 9 8 22
|
cgratr |
|- ( ph -> <" C B A "> ( cgrA ` G ) <" F E D "> ) |