Metamath Proof Explorer


Theorem cgraswaplr

Description: Swap both side of angle congruence. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses cgracol.p
|- P = ( Base ` G )
cgracol.i
|- I = ( Itv ` G )
cgracol.m
|- .- = ( dist ` G )
cgracol.g
|- ( ph -> G e. TarskiG )
cgracol.a
|- ( ph -> A e. P )
cgracol.b
|- ( ph -> B e. P )
cgracol.c
|- ( ph -> C e. P )
cgracol.d
|- ( ph -> D e. P )
cgracol.e
|- ( ph -> E e. P )
cgracol.f
|- ( ph -> F e. P )
cgracol.1
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )
Assertion cgraswaplr
|- ( ph -> <" C B A "> ( cgrA ` G ) <" F E D "> )

Proof

Step Hyp Ref Expression
1 cgracol.p
 |-  P = ( Base ` G )
2 cgracol.i
 |-  I = ( Itv ` G )
3 cgracol.m
 |-  .- = ( dist ` G )
4 cgracol.g
 |-  ( ph -> G e. TarskiG )
5 cgracol.a
 |-  ( ph -> A e. P )
6 cgracol.b
 |-  ( ph -> B e. P )
7 cgracol.c
 |-  ( ph -> C e. P )
8 cgracol.d
 |-  ( ph -> D e. P )
9 cgracol.e
 |-  ( ph -> E e. P )
10 cgracol.f
 |-  ( ph -> F e. P )
11 cgracol.1
 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )
12 eqid
 |-  ( hlG ` G ) = ( hlG ` G )
13 1 2 12 4 5 6 7 8 9 10 11 cgrane2
 |-  ( ph -> B =/= C )
14 13 necomd
 |-  ( ph -> C =/= B )
15 1 2 12 4 5 6 7 8 9 10 11 cgrane1
 |-  ( ph -> A =/= B )
16 15 necomd
 |-  ( ph -> B =/= A )
17 1 2 4 12 7 6 5 14 16 cgraswap
 |-  ( ph -> <" C B A "> ( cgrA ` G ) <" A B C "> )
18 1 2 4 12 7 6 5 5 6 7 17 8 9 10 11 cgratr
 |-  ( ph -> <" C B A "> ( cgrA ` G ) <" D E F "> )
19 1 2 12 4 5 6 7 8 9 10 11 cgrane3
 |-  ( ph -> E =/= D )
20 19 necomd
 |-  ( ph -> D =/= E )
21 1 2 12 4 5 6 7 8 9 10 11 cgrane4
 |-  ( ph -> E =/= F )
22 1 2 4 12 8 9 10 20 21 cgraswap
 |-  ( ph -> <" D E F "> ( cgrA ` G ) <" F E D "> )
23 1 2 4 12 7 6 5 8 9 10 18 10 9 8 22 cgratr
 |-  ( ph -> <" C B A "> ( cgrA ` G ) <" F E D "> )