| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cgraid.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							cgraid.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							cgraid.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 4 | 
							
								
							 | 
							cgraid.k | 
							 |-  K = ( hlG ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							cgraid.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							cgraid.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							cgraid.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							cgracom.d | 
							 |-  ( ph -> D e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							cgracom.e | 
							 |-  ( ph -> E e. P )  | 
						
						
							| 10 | 
							
								
							 | 
							cgracom.f | 
							 |-  ( ph -> F e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							cgrcgra.1 | 
							 |-  ( ph -> A =/= B )  | 
						
						
							| 12 | 
							
								
							 | 
							cgrcgra.2 | 
							 |-  ( ph -> B =/= C )  | 
						
						
							| 13 | 
							
								
							 | 
							cgrcgra.3 | 
							 |-  ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( dist ` G ) = ( dist ` G )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( cgrG ` G ) = ( cgrG ` G )  | 
						
						
							| 16 | 
							
								1 14 2 15 3 5 6 7 8 9 10 13
							 | 
							cgr3simp1 | 
							 |-  ( ph -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) )  | 
						
						
							| 17 | 
							
								1 14 2 3 5 6 8 9 16 11
							 | 
							tgcgrneq | 
							 |-  ( ph -> D =/= E )  | 
						
						
							| 18 | 
							
								1 2 4 8 5 9 3 17
							 | 
							hlid | 
							 |-  ( ph -> D ( K ` E ) D )  | 
						
						
							| 19 | 
							
								1 14 2 15 3 5 6 7 8 9 10 13
							 | 
							cgr3simp2 | 
							 |-  ( ph -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) F ) )  | 
						
						
							| 20 | 
							
								1 14 2 3 6 7 9 10 19
							 | 
							tgcgrcomlr | 
							 |-  ( ph -> ( C ( dist ` G ) B ) = ( F ( dist ` G ) E ) )  | 
						
						
							| 21 | 
							
								12
							 | 
							necomd | 
							 |-  ( ph -> C =/= B )  | 
						
						
							| 22 | 
							
								1 14 2 3 7 6 10 9 20 21
							 | 
							tgcgrneq | 
							 |-  ( ph -> F =/= E )  | 
						
						
							| 23 | 
							
								1 2 4 10 5 9 3 22
							 | 
							hlid | 
							 |-  ( ph -> F ( K ` E ) F )  | 
						
						
							| 24 | 
							
								1 2 4 3 5 6 7 8 9 10 8 10 13 18 23
							 | 
							iscgrad | 
							 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )  |