Metamath Proof Explorer


Theorem cgrcgra

Description: Triangle congruence implies angle congruence. This is a portion of CPCTC, focusing on a specific angle. (Contributed by Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses cgraid.p
|- P = ( Base ` G )
cgraid.i
|- I = ( Itv ` G )
cgraid.g
|- ( ph -> G e. TarskiG )
cgraid.k
|- K = ( hlG ` G )
cgraid.a
|- ( ph -> A e. P )
cgraid.b
|- ( ph -> B e. P )
cgraid.c
|- ( ph -> C e. P )
cgracom.d
|- ( ph -> D e. P )
cgracom.e
|- ( ph -> E e. P )
cgracom.f
|- ( ph -> F e. P )
cgrcgra.1
|- ( ph -> A =/= B )
cgrcgra.2
|- ( ph -> B =/= C )
cgrcgra.3
|- ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> )
Assertion cgrcgra
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )

Proof

Step Hyp Ref Expression
1 cgraid.p
 |-  P = ( Base ` G )
2 cgraid.i
 |-  I = ( Itv ` G )
3 cgraid.g
 |-  ( ph -> G e. TarskiG )
4 cgraid.k
 |-  K = ( hlG ` G )
5 cgraid.a
 |-  ( ph -> A e. P )
6 cgraid.b
 |-  ( ph -> B e. P )
7 cgraid.c
 |-  ( ph -> C e. P )
8 cgracom.d
 |-  ( ph -> D e. P )
9 cgracom.e
 |-  ( ph -> E e. P )
10 cgracom.f
 |-  ( ph -> F e. P )
11 cgrcgra.1
 |-  ( ph -> A =/= B )
12 cgrcgra.2
 |-  ( ph -> B =/= C )
13 cgrcgra.3
 |-  ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> )
14 eqid
 |-  ( dist ` G ) = ( dist ` G )
15 eqid
 |-  ( cgrG ` G ) = ( cgrG ` G )
16 1 14 2 15 3 5 6 7 8 9 10 13 cgr3simp1
 |-  ( ph -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) )
17 1 14 2 3 5 6 8 9 16 11 tgcgrneq
 |-  ( ph -> D =/= E )
18 1 2 4 8 5 9 3 17 hlid
 |-  ( ph -> D ( K ` E ) D )
19 1 14 2 15 3 5 6 7 8 9 10 13 cgr3simp2
 |-  ( ph -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) F ) )
20 1 14 2 3 6 7 9 10 19 tgcgrcomlr
 |-  ( ph -> ( C ( dist ` G ) B ) = ( F ( dist ` G ) E ) )
21 12 necomd
 |-  ( ph -> C =/= B )
22 1 14 2 3 7 6 10 9 20 21 tgcgrneq
 |-  ( ph -> F =/= E )
23 1 2 4 10 5 9 3 22 hlid
 |-  ( ph -> F ( K ` E ) F )
24 1 2 4 3 5 6 7 8 9 10 8 10 13 18 23 iscgrad
 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )