Metamath Proof Explorer


Theorem cgsex4g

Description: An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Hypotheses cgsex4g.1
|- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ch )
cgsex4g.2
|- ( ch -> ( ph <-> ps ) )
Assertion cgsex4g
|- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ch /\ ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 cgsex4g.1
 |-  ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ch )
2 cgsex4g.2
 |-  ( ch -> ( ph <-> ps ) )
3 2 biimpa
 |-  ( ( ch /\ ph ) -> ps )
4 3 exlimivv
 |-  ( E. z E. w ( ch /\ ph ) -> ps )
5 4 exlimivv
 |-  ( E. x E. y E. z E. w ( ch /\ ph ) -> ps )
6 elisset
 |-  ( A e. R -> E. x x = A )
7 elisset
 |-  ( B e. S -> E. y y = B )
8 6 7 anim12i
 |-  ( ( A e. R /\ B e. S ) -> ( E. x x = A /\ E. y y = B ) )
9 exdistrv
 |-  ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) )
10 8 9 sylibr
 |-  ( ( A e. R /\ B e. S ) -> E. x E. y ( x = A /\ y = B ) )
11 elisset
 |-  ( C e. R -> E. z z = C )
12 elisset
 |-  ( D e. S -> E. w w = D )
13 11 12 anim12i
 |-  ( ( C e. R /\ D e. S ) -> ( E. z z = C /\ E. w w = D ) )
14 exdistrv
 |-  ( E. z E. w ( z = C /\ w = D ) <-> ( E. z z = C /\ E. w w = D ) )
15 13 14 sylibr
 |-  ( ( C e. R /\ D e. S ) -> E. z E. w ( z = C /\ w = D ) )
16 10 15 anim12i
 |-  ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) )
17 eqeq1
 |-  ( z = v -> ( z = C <-> v = C ) )
18 17 anbi1d
 |-  ( z = v -> ( ( z = C /\ w = D ) <-> ( v = C /\ w = D ) ) )
19 18 anbi2d
 |-  ( z = v -> ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( ( x = A /\ y = B ) /\ ( v = C /\ w = D ) ) ) )
20 19 exbidv
 |-  ( z = v -> ( E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. w ( ( x = A /\ y = B ) /\ ( v = C /\ w = D ) ) ) )
21 20 notbid
 |-  ( z = v -> ( -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. E. w ( ( x = A /\ y = B ) /\ ( v = C /\ w = D ) ) ) )
22 21 alcomiw
 |-  ( A. y A. z -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> A. z A. y -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
23 eqeq1
 |-  ( y = v -> ( y = B <-> v = B ) )
24 23 anbi2d
 |-  ( y = v -> ( ( x = A /\ y = B ) <-> ( x = A /\ v = B ) ) )
25 24 anbi1d
 |-  ( y = v -> ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( ( x = A /\ v = B ) /\ ( z = C /\ w = D ) ) ) )
26 25 exbidv
 |-  ( y = v -> ( E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. w ( ( x = A /\ v = B ) /\ ( z = C /\ w = D ) ) ) )
27 26 notbid
 |-  ( y = v -> ( -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. E. w ( ( x = A /\ v = B ) /\ ( z = C /\ w = D ) ) ) )
28 27 alcomiw
 |-  ( A. z A. y -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> A. y A. z -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
29 22 28 impbii
 |-  ( A. y A. z -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> A. z A. y -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
30 29 notbii
 |-  ( -. A. y A. z -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. A. z A. y -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
31 2exnaln
 |-  ( E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. A. y A. z -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
32 2exnaln
 |-  ( E. z E. y E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. A. z A. y -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
33 30 31 32 3bitr4i
 |-  ( E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. z E. y E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
34 33 exbii
 |-  ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. x E. z E. y E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
35 4exdistrv
 |-  ( E. x E. z E. y E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( E. x E. y ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) )
36 34 35 bitri
 |-  ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( E. x E. y ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) )
37 16 36 sylibr
 |-  ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) )
38 1 2eximi
 |-  ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> E. z E. w ch )
39 38 2eximi
 |-  ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> E. x E. y E. z E. w ch )
40 37 39 syl
 |-  ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> E. x E. y E. z E. w ch )
41 2 biimprcd
 |-  ( ps -> ( ch -> ph ) )
42 41 ancld
 |-  ( ps -> ( ch -> ( ch /\ ph ) ) )
43 42 2eximdv
 |-  ( ps -> ( E. z E. w ch -> E. z E. w ( ch /\ ph ) ) )
44 43 2eximdv
 |-  ( ps -> ( E. x E. y E. z E. w ch -> E. x E. y E. z E. w ( ch /\ ph ) ) )
45 40 44 syl5com
 |-  ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( ps -> E. x E. y E. z E. w ( ch /\ ph ) ) )
46 5 45 impbid2
 |-  ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ch /\ ph ) <-> ps ) )