| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgsexg.1 |
|- ( x = A -> ch ) |
| 2 |
|
cgsexg.2 |
|- ( ch -> ( ph <-> ps ) ) |
| 3 |
2
|
biimpa |
|- ( ( ch /\ ph ) -> ps ) |
| 4 |
3
|
exlimiv |
|- ( E. x ( ch /\ ph ) -> ps ) |
| 5 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
| 6 |
1
|
eximi |
|- ( E. x x = A -> E. x ch ) |
| 7 |
5 6
|
syl |
|- ( A e. V -> E. x ch ) |
| 8 |
2
|
biimprcd |
|- ( ps -> ( ch -> ph ) ) |
| 9 |
8
|
ancld |
|- ( ps -> ( ch -> ( ch /\ ph ) ) ) |
| 10 |
9
|
eximdv |
|- ( ps -> ( E. x ch -> E. x ( ch /\ ph ) ) ) |
| 11 |
7 10
|
syl5com |
|- ( A e. V -> ( ps -> E. x ( ch /\ ph ) ) ) |
| 12 |
4 11
|
impbid2 |
|- ( A e. V -> ( E. x ( ch /\ ph ) <-> ps ) ) |