Step |
Hyp |
Ref |
Expression |
1 |
|
cgsexg.1 |
|- ( x = A -> ch ) |
2 |
|
cgsexg.2 |
|- ( ch -> ( ph <-> ps ) ) |
3 |
2
|
biimpa |
|- ( ( ch /\ ph ) -> ps ) |
4 |
3
|
exlimiv |
|- ( E. x ( ch /\ ph ) -> ps ) |
5 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
6 |
1
|
eximi |
|- ( E. x x = A -> E. x ch ) |
7 |
5 6
|
syl |
|- ( A e. V -> E. x ch ) |
8 |
2
|
biimprcd |
|- ( ps -> ( ch -> ph ) ) |
9 |
8
|
ancld |
|- ( ps -> ( ch -> ( ch /\ ph ) ) ) |
10 |
9
|
eximdv |
|- ( ps -> ( E. x ch -> E. x ( ch /\ ph ) ) ) |
11 |
7 10
|
syl5com |
|- ( A e. V -> ( ps -> E. x ( ch /\ ph ) ) ) |
12 |
4 11
|
impbid2 |
|- ( A e. V -> ( E. x ( ch /\ ph ) <-> ps ) ) |