Description: The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ch0 | |- ( H e. CH -> 0h e. H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh | |- ( H e. CH -> H e. SH ) |
|
| 2 | sh0 | |- ( H e. SH -> 0h e. H ) |
|
| 3 | 1 2 | syl | |- ( H e. CH -> 0h e. H ) |