Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ch0pss | |- ( A e. CH -> ( 0H C. A <-> A =/= 0H ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss | |- ( 0H C. A <-> ( 0H C_ A /\ 0H =/= A ) ) |
|
2 | necom | |- ( 0H =/= A <-> A =/= 0H ) |
|
3 | ch0le | |- ( A e. CH -> 0H C_ A ) |
|
4 | 3 | biantrurd | |- ( A e. CH -> ( 0H =/= A <-> ( 0H C_ A /\ 0H =/= A ) ) ) |
5 | 2 4 | bitr3id | |- ( A e. CH -> ( A =/= 0H <-> ( 0H C_ A /\ 0H =/= A ) ) ) |
6 | 1 5 | bitr4id | |- ( A e. CH -> ( 0H C. A <-> A =/= 0H ) ) |