Metamath Proof Explorer


Theorem ch0pss

Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ch0pss
|- ( A e. CH -> ( 0H C. A <-> A =/= 0H ) )

Proof

Step Hyp Ref Expression
1 df-pss
 |-  ( 0H C. A <-> ( 0H C_ A /\ 0H =/= A ) )
2 necom
 |-  ( 0H =/= A <-> A =/= 0H )
3 ch0le
 |-  ( A e. CH -> 0H C_ A )
4 3 biantrurd
 |-  ( A e. CH -> ( 0H =/= A <-> ( 0H C_ A /\ 0H =/= A ) ) )
5 2 4 bitr3id
 |-  ( A e. CH -> ( A =/= 0H <-> ( 0H C_ A /\ 0H =/= A ) ) )
6 1 5 bitr4id
 |-  ( A e. CH -> ( 0H C. A <-> A =/= 0H ) )