Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ch0pss | |- ( A e. CH -> ( 0H C. A <-> A =/= 0H ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pss | |- ( 0H C. A <-> ( 0H C_ A /\ 0H =/= A ) )  | 
						|
| 2 | necom | |- ( 0H =/= A <-> A =/= 0H )  | 
						|
| 3 | ch0le | |- ( A e. CH -> 0H C_ A )  | 
						|
| 4 | 3 | biantrurd | |- ( A e. CH -> ( 0H =/= A <-> ( 0H C_ A /\ 0H =/= A ) ) )  | 
						
| 5 | 2 4 | bitr3id | |- ( A e. CH -> ( A =/= 0H <-> ( 0H C_ A /\ 0H =/= A ) ) )  | 
						
| 6 | 1 5 | bitr4id | |- ( A e. CH -> ( 0H C. A <-> A =/= 0H ) )  |