| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssid | 
							 |-  A C_ A  | 
						
						
							| 2 | 
							
								
							 | 
							inss1 | 
							 |-  ( A i^i B ) C_ A  | 
						
						
							| 3 | 
							
								1 2
							 | 
							pm3.2i | 
							 |-  ( A C_ A /\ ( A i^i B ) C_ A )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							 |-  ( ( A e. CH /\ B e. CH ) -> A e. CH )  | 
						
						
							| 5 | 
							
								
							 | 
							chincl | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH )  | 
						
						
							| 6 | 
							
								
							 | 
							chlub | 
							 |-  ( ( A e. CH /\ ( A i^i B ) e. CH /\ A e. CH ) -> ( ( A C_ A /\ ( A i^i B ) C_ A ) <-> ( A vH ( A i^i B ) ) C_ A ) )  | 
						
						
							| 7 | 
							
								4 5 4 6
							 | 
							syl3anc | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( ( A C_ A /\ ( A i^i B ) C_ A ) <-> ( A vH ( A i^i B ) ) C_ A ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							mpbii | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH ( A i^i B ) ) C_ A )  | 
						
						
							| 9 | 
							
								
							 | 
							chub1 | 
							 |-  ( ( A e. CH /\ ( A i^i B ) e. CH ) -> A C_ ( A vH ( A i^i B ) ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							syldan | 
							 |-  ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH ( A i^i B ) ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							eqssd | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH ( A i^i B ) ) = A )  |