Step |
Hyp |
Ref |
Expression |
1 |
|
chub1 |
|- ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH B ) ) |
2 |
|
ssid |
|- A C_ A |
3 |
1 2
|
jctil |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ A /\ A C_ ( A vH B ) ) ) |
4 |
|
ssin |
|- ( ( A C_ A /\ A C_ ( A vH B ) ) <-> A C_ ( A i^i ( A vH B ) ) ) |
5 |
3 4
|
sylib |
|- ( ( A e. CH /\ B e. CH ) -> A C_ ( A i^i ( A vH B ) ) ) |
6 |
|
inss1 |
|- ( A i^i ( A vH B ) ) C_ A |
7 |
5 6
|
jctil |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i ( A vH B ) ) C_ A /\ A C_ ( A i^i ( A vH B ) ) ) ) |
8 |
|
eqss |
|- ( ( A i^i ( A vH B ) ) = A <-> ( ( A i^i ( A vH B ) ) C_ A /\ A C_ ( A i^i ( A vH B ) ) ) ) |
9 |
7 8
|
sylibr |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i ( A vH B ) ) = A ) |