Step |
Hyp |
Ref |
Expression |
1 |
|
chcoeffeq.a |
|- A = ( N Mat R ) |
2 |
|
chcoeffeq.b |
|- B = ( Base ` A ) |
3 |
|
chcoeffeq.p |
|- P = ( Poly1 ` R ) |
4 |
|
chcoeffeq.y |
|- Y = ( N Mat P ) |
5 |
|
chcoeffeq.r |
|- .X. = ( .r ` Y ) |
6 |
|
chcoeffeq.s |
|- .- = ( -g ` Y ) |
7 |
|
chcoeffeq.0 |
|- .0. = ( 0g ` Y ) |
8 |
|
chcoeffeq.t |
|- T = ( N matToPolyMat R ) |
9 |
|
chcoeffeq.c |
|- C = ( N CharPlyMat R ) |
10 |
|
chcoeffeq.k |
|- K = ( C ` M ) |
11 |
|
chcoeffeq.g |
|- G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) |
12 |
|
chcoeffeq.w |
|- W = ( Base ` Y ) |
13 |
|
chcoeffeq.1 |
|- .1. = ( 1r ` A ) |
14 |
|
chcoeffeq.m |
|- .* = ( .s ` A ) |
15 |
|
chcoeffeq.u |
|- U = ( N cPolyMatToMat R ) |
16 |
|
eqid |
|- ( Poly1 ` A ) = ( Poly1 ` A ) |
17 |
|
eqid |
|- ( var1 ` A ) = ( var1 ` A ) |
18 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) |
19 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
20 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
21 |
19 20
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
22 |
21
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> A e. Ring ) |
23 |
22
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> A e. Ring ) |
24 |
|
eqid |
|- ( .s ` ( Poly1 ` A ) ) = ( .s ` ( Poly1 ` A ) ) |
25 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
26 |
|
eqid |
|- ( N ConstPolyMat R ) = ( N ConstPolyMat R ) |
27 |
|
eqid |
|- ( .s ` Y ) = ( .s ` Y ) |
28 |
|
eqid |
|- ( 1r ` Y ) = ( 1r ` Y ) |
29 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
30 |
|
eqid |
|- ( ( ( var1 ` R ) ( .s ` Y ) ( 1r ` Y ) ) .- ( T ` M ) ) = ( ( ( var1 ` R ) ( .s ` Y ) ( 1r ` Y ) ) .- ( T ` M ) ) |
31 |
|
eqid |
|- ( N maAdju P ) = ( N maAdju P ) |
32 |
1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15
|
cpmadumatpolylem1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U o. G ) e. ( B ^m NN0 ) ) |
33 |
32
|
anasss |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U o. G ) e. ( B ^m NN0 ) ) |
34 |
1 2 3 4 5 6 7 8 11 26
|
chfacfisfcpmat |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> ( N ConstPolyMat R ) ) |
35 |
19 34
|
syl3anl2 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> ( N ConstPolyMat R ) ) |
36 |
35
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) -> G : NN0 --> ( N ConstPolyMat R ) ) |
37 |
|
fvco3 |
|- ( ( G : NN0 --> ( N ConstPolyMat R ) /\ l e. NN0 ) -> ( ( U o. G ) ` l ) = ( U ` ( G ` l ) ) ) |
38 |
37
|
eqcomd |
|- ( ( G : NN0 --> ( N ConstPolyMat R ) /\ l e. NN0 ) -> ( U ` ( G ` l ) ) = ( ( U o. G ) ` l ) ) |
39 |
36 38
|
sylan |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) /\ l e. NN0 ) -> ( U ` ( G ` l ) ) = ( ( U o. G ) ` l ) ) |
40 |
|
elmapi |
|- ( ( U o. G ) e. ( B ^m NN0 ) -> ( U o. G ) : NN0 --> B ) |
41 |
40
|
adantl |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) -> ( U o. G ) : NN0 --> B ) |
42 |
41
|
ffvelrnda |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) /\ l e. NN0 ) -> ( ( U o. G ) ` l ) e. B ) |
43 |
39 42
|
eqeltrd |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) /\ l e. NN0 ) -> ( U ` ( G ` l ) ) e. B ) |
44 |
43
|
ralrimiva |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) -> A. l e. NN0 ( U ` ( G ` l ) ) e. B ) |
45 |
33 44
|
mpdan |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> A. l e. NN0 ( U ` ( G ` l ) ) e. B ) |
46 |
19
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
47 |
46
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) |
48 |
47
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( N e. Fin /\ R e. Ring ) ) |
49 |
1 2 26 15
|
cpm2mf |
|- ( ( N e. Fin /\ R e. Ring ) -> U : ( N ConstPolyMat R ) --> B ) |
50 |
48 49
|
syl |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> U : ( N ConstPolyMat R ) --> B ) |
51 |
|
fcompt |
|- ( ( U : ( N ConstPolyMat R ) --> B /\ G : NN0 --> ( N ConstPolyMat R ) ) -> ( U o. G ) = ( l e. NN0 |-> ( U ` ( G ` l ) ) ) ) |
52 |
50 35 51
|
syl2anc |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U o. G ) = ( l e. NN0 |-> ( U ` ( G ` l ) ) ) ) |
53 |
1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15
|
cpmadumatpolylem2 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U o. G ) finSupp ( 0g ` A ) ) |
54 |
53
|
anasss |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U o. G ) finSupp ( 0g ` A ) ) |
55 |
52 54
|
eqbrtrrd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( l e. NN0 |-> ( U ` ( G ` l ) ) ) finSupp ( 0g ` A ) ) |
56 |
|
simpll1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> N e. Fin ) |
57 |
19
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. Ring ) |
58 |
57
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> R e. Ring ) |
59 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
60 |
9 1 2 3 59
|
chpmatply1 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) |
61 |
10 60
|
eqeltrid |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) ) |
62 |
|
eqid |
|- ( coe1 ` K ) = ( coe1 ` K ) |
63 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
64 |
62 59 3 63
|
coe1fvalcl |
|- ( ( K e. ( Base ` P ) /\ l e. NN0 ) -> ( ( coe1 ` K ) ` l ) e. ( Base ` R ) ) |
65 |
61 64
|
sylan |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) -> ( ( coe1 ` K ) ` l ) e. ( Base ` R ) ) |
66 |
65
|
adantlr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> ( ( coe1 ` K ) ` l ) e. ( Base ` R ) ) |
67 |
2 13
|
ringidcl |
|- ( A e. Ring -> .1. e. B ) |
68 |
22 67
|
syl |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> .1. e. B ) |
69 |
68
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> .1. e. B ) |
70 |
63 1 2 14
|
matvscl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( ( ( coe1 ` K ) ` l ) e. ( Base ` R ) /\ .1. e. B ) ) -> ( ( ( coe1 ` K ) ` l ) .* .1. ) e. B ) |
71 |
56 58 66 69 70
|
syl22anc |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> ( ( ( coe1 ` K ) ` l ) .* .1. ) e. B ) |
72 |
71
|
ralrimiva |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> A. l e. NN0 ( ( ( coe1 ` K ) ` l ) .* .1. ) e. B ) |
73 |
|
nn0ex |
|- NN0 e. _V |
74 |
73
|
a1i |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> NN0 e. _V ) |
75 |
1
|
matlmod |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
76 |
19 75
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. LMod ) |
77 |
76
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> A e. LMod ) |
78 |
77
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> A e. LMod ) |
79 |
|
eqidd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( Scalar ` A ) = ( Scalar ` A ) ) |
80 |
|
fvexd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> ( ( coe1 ` K ) ` l ) e. _V ) |
81 |
|
eqid |
|- ( 0g ` ( Scalar ` A ) ) = ( 0g ` ( Scalar ` A ) ) |
82 |
1
|
matsca2 |
|- ( ( N e. Fin /\ R e. CRing ) -> R = ( Scalar ` A ) ) |
83 |
82
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R = ( Scalar ` A ) ) |
84 |
83 57
|
eqeltrrd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Scalar ` A ) e. Ring ) |
85 |
83
|
eqcomd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Scalar ` A ) = R ) |
86 |
85
|
fveq2d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Poly1 ` ( Scalar ` A ) ) = ( Poly1 ` R ) ) |
87 |
86 3
|
eqtr4di |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Poly1 ` ( Scalar ` A ) ) = P ) |
88 |
87
|
fveq2d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) = ( Base ` P ) ) |
89 |
61 88
|
eleqtrrd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) ) |
90 |
|
eqid |
|- ( Poly1 ` ( Scalar ` A ) ) = ( Poly1 ` ( Scalar ` A ) ) |
91 |
|
eqid |
|- ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) = ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) |
92 |
90 91 81
|
mptcoe1fsupp |
|- ( ( ( Scalar ` A ) e. Ring /\ K e. ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) ) -> ( l e. NN0 |-> ( ( coe1 ` K ) ` l ) ) finSupp ( 0g ` ( Scalar ` A ) ) ) |
93 |
84 89 92
|
syl2anc |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( l e. NN0 |-> ( ( coe1 ` K ) ` l ) ) finSupp ( 0g ` ( Scalar ` A ) ) ) |
94 |
93
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( l e. NN0 |-> ( ( coe1 ` K ) ` l ) ) finSupp ( 0g ` ( Scalar ` A ) ) ) |
95 |
74 78 79 2 80 69 25 81 14 94
|
mptscmfsupp0 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( l e. NN0 |-> ( ( ( coe1 ` K ) ` l ) .* .1. ) ) finSupp ( 0g ` A ) ) |
96 |
|
2fveq3 |
|- ( n = l -> ( U ` ( G ` n ) ) = ( U ` ( G ` l ) ) ) |
97 |
|
oveq1 |
|- ( n = l -> ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) = ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) |
98 |
96 97
|
oveq12d |
|- ( n = l -> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) = ( ( U ` ( G ` l ) ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) |
99 |
98
|
cbvmptv |
|- ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) = ( l e. NN0 |-> ( ( U ` ( G ` l ) ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) |
100 |
99
|
oveq2i |
|- ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( l e. NN0 |-> ( ( U ` ( G ` l ) ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) |
101 |
100
|
a1i |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( l e. NN0 |-> ( ( U ` ( G ` l ) ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) ) |
102 |
|
fveq2 |
|- ( n = l -> ( ( coe1 ` K ) ` n ) = ( ( coe1 ` K ) ` l ) ) |
103 |
102
|
oveq1d |
|- ( n = l -> ( ( ( coe1 ` K ) ` n ) .* .1. ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) |
104 |
103 97
|
oveq12d |
|- ( n = l -> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) = ( ( ( ( coe1 ` K ) ` l ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) |
105 |
104
|
cbvmptv |
|- ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) = ( l e. NN0 |-> ( ( ( ( coe1 ` K ) ` l ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) |
106 |
105
|
oveq2i |
|- ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( l e. NN0 |-> ( ( ( ( coe1 ` K ) ` l ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) |
107 |
106
|
a1i |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( l e. NN0 |-> ( ( ( ( coe1 ` K ) ` l ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) ) |
108 |
16 17 18 23 2 24 25 45 55 72 95 101 107
|
gsumply1eq |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) <-> A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) ) |
109 |
108
|
biimpa |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) ) -> A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) |
110 |
96 103
|
eqeq12d |
|- ( n = l -> ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) <-> ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) ) |
111 |
110
|
cbvralvw |
|- ( A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) <-> A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) |
112 |
109 111
|
sylibr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) ) -> A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) ) |
113 |
112
|
ex |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) -> A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) ) ) |