| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isch3 |  |-  ( H e. CH <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) | 
						
							| 2 | 1 | simprbi |  |-  ( H e. CH -> A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) | 
						
							| 3 |  | feq1 |  |-  ( f = F -> ( f : NN --> H <-> F : NN --> H ) ) | 
						
							| 4 |  | breq1 |  |-  ( f = F -> ( f ~~>v x <-> F ~~>v x ) ) | 
						
							| 5 | 4 | rexbidv |  |-  ( f = F -> ( E. x e. H f ~~>v x <-> E. x e. H F ~~>v x ) ) | 
						
							| 6 | 3 5 | imbi12d |  |-  ( f = F -> ( ( f : NN --> H -> E. x e. H f ~~>v x ) <-> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) | 
						
							| 7 | 6 | rspccv |  |-  ( A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) -> ( F e. Cauchy -> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( H e. CH -> ( F e. Cauchy -> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) | 
						
							| 9 | 8 | 3imp |  |-  ( ( H e. CH /\ F e. Cauchy /\ F : NN --> H ) -> E. x e. H F ~~>v x ) |