| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ch0le.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							chjcl.2 | 
							 |-  B e. CH  | 
						
						
							| 3 | 
							
								1 2
							 | 
							chsscon3i | 
							 |-  ( A C_ B <-> ( _|_ ` B ) C_ ( _|_ ` A ) )  | 
						
						
							| 4 | 
							
								2 1
							 | 
							chsscon3i | 
							 |-  ( B C_ A <-> ( _|_ ` A ) C_ ( _|_ ` B ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							anbi12i | 
							 |-  ( ( A C_ B /\ B C_ A ) <-> ( ( _|_ ` B ) C_ ( _|_ ` A ) /\ ( _|_ ` A ) C_ ( _|_ ` B ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqss | 
							 |-  ( A = B <-> ( A C_ B /\ B C_ A ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqss | 
							 |-  ( ( _|_ ` B ) = ( _|_ ` A ) <-> ( ( _|_ ` B ) C_ ( _|_ ` A ) /\ ( _|_ ` A ) C_ ( _|_ ` B ) ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							3bitr4i | 
							 |-  ( A = B <-> ( _|_ ` B ) = ( _|_ ` A ) )  |