| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atom1d | 
							 |-  ( B e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) ) | 
						
						
							| 2 | 
							
								
							 | 
							spansncv2 | 
							 |-  ( ( A e. CH /\ x e. ~H ) -> ( -. ( span ` { x } ) C_ A -> A  | 
						
						
							| 3 | 
							
								
							 | 
							sseq1 | 
							 |-  ( B = ( span ` { x } ) -> ( B C_ A <-> ( span ` { x } ) C_ A ) ) | 
						
						
							| 4 | 
							
								3
							 | 
							notbid | 
							 |-  ( B = ( span ` { x } ) -> ( -. B C_ A <-> -. ( span ` { x } ) C_ A ) ) | 
						
						
							| 5 | 
							
								
							 | 
							oveq2 | 
							 |-  ( B = ( span ` { x } ) -> ( A vH B ) = ( A vH ( span ` { x } ) ) ) | 
						
						
							| 6 | 
							
								5
							 | 
							breq2d | 
							 |-  ( B = ( span ` { x } ) -> ( A  A  | 
						
						
							| 7 | 
							
								4 6
							 | 
							imbi12d | 
							 |-  ( B = ( span ` { x } ) -> ( ( -. B C_ A -> A  ( -. ( span ` { x } ) C_ A -> A  | 
						
						
							| 8 | 
							
								2 7
							 | 
							syl5ibrcom | 
							 |-  ( ( A e. CH /\ x e. ~H ) -> ( B = ( span ` { x } ) -> ( -. B C_ A -> A  | 
						
						
							| 9 | 
							
								8
							 | 
							adantld | 
							 |-  ( ( A e. CH /\ x e. ~H ) -> ( ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( -. B C_ A -> A  | 
						
						
							| 10 | 
							
								9
							 | 
							rexlimdva | 
							 |-  ( A e. CH -> ( E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( -. B C_ A -> A  | 
						
						
							| 11 | 
							
								10
							 | 
							imp | 
							 |-  ( ( A e. CH /\ E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) ) -> ( -. B C_ A -> A  | 
						
						
							| 12 | 
							
								1 11
							 | 
							sylan2b | 
							 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A -> A   | 
						
						
							| 13 | 
							
								
							 | 
							atelch | 
							 |-  ( B e. HAtoms -> B e. CH )  | 
						
						
							| 14 | 
							
								
							 | 
							chjcl | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH )  | 
						
						
							| 15 | 
							
								
							 | 
							cvpss | 
							 |-  ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( A  A C. ( A vH B ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syldan | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A  A C. ( A vH B ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							chnle | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( -. B C_ A <-> A C. ( A vH B ) ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							sylibrd | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A  -. B C_ A ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							sylan2 | 
							 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A  -. B C_ A ) )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							impbid | 
							 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> A   |