| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chdmm4 |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH B ) ) |
| 2 |
1
|
fveq2d |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( _|_ ` ( A vH B ) ) ) |
| 3 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 4 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
| 5 |
|
chincl |
|- ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH ) |
| 7 |
|
ococ |
|- ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH -> ( _|_ ` ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) |
| 8 |
6 7
|
syl |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) |
| 9 |
2 8
|
eqtr3d |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) |