Metamath Proof Explorer


Theorem chdmj1i

Description: De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
Assertion chdmj1i
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 1 2 chdmm4i
 |-  ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH B )
4 3 fveq2i
 |-  ( _|_ ` ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( _|_ ` ( A vH B ) )
5 1 choccli
 |-  ( _|_ ` A ) e. CH
6 2 choccli
 |-  ( _|_ ` B ) e. CH
7 5 6 chincli
 |-  ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH
8 7 pjococi
 |-  ( _|_ ` ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) )
9 4 8 eqtr3i
 |-  ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) )