| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							choccl | 
							 |-  ( A e. CH -> ( _|_ ` A ) e. CH )  | 
						
						
							| 2 | 
							
								
							 | 
							chdmj1 | 
							 |-  ( ( ( _|_ ` A ) e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) vH B ) ) = ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) vH B ) ) = ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ococ | 
							 |-  ( A e. CH -> ( _|_ ` ( _|_ ` A ) ) = A )  | 
						
						
							| 5 | 
							
								4
							 | 
							ineq1d | 
							 |-  ( A e. CH -> ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( A i^i ( _|_ ` B ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) = ( A i^i ( _|_ ` B ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqtrd | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) vH B ) ) = ( A i^i ( _|_ ` B ) ) )  |