Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
2 |
|
chdmj1 |
|- ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( _|_ ` ( A vH ( _|_ ` B ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A vH ( _|_ ` B ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) |
4 |
|
ococ |
|- ( B e. CH -> ( _|_ ` ( _|_ ` B ) ) = B ) |
5 |
4
|
adantl |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` B ) ) = B ) |
6 |
5
|
ineq2d |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) = ( ( _|_ ` A ) i^i B ) ) |
7 |
3 6
|
eqtrd |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A vH ( _|_ ` B ) ) ) = ( ( _|_ ` A ) i^i B ) ) |