| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ch0le.1 |
|- A e. CH |
| 2 |
|
chjcl.2 |
|- B e. CH |
| 3 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 4 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 5 |
3 4
|
chub1i |
|- ( _|_ ` A ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
| 6 |
3 4
|
chjcli |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH |
| 7 |
1 6
|
chsscon1i |
|- ( ( _|_ ` A ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) <-> ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ A ) |
| 8 |
5 7
|
mpbi |
|- ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ A |
| 9 |
4 3
|
chub2i |
|- ( _|_ ` B ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
| 10 |
2 6
|
chsscon1i |
|- ( ( _|_ ` B ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) <-> ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B ) |
| 11 |
9 10
|
mpbi |
|- ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B |
| 12 |
8 11
|
ssini |
|- ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ ( A i^i B ) |
| 13 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 14 |
6 13
|
chsscon1i |
|- ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ ( A i^i B ) <-> ( _|_ ` ( A i^i B ) ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
| 15 |
12 14
|
mpbi |
|- ( _|_ ` ( A i^i B ) ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
| 16 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 17 |
13 1
|
chsscon3i |
|- ( ( A i^i B ) C_ A <-> ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) ) ) |
| 18 |
16 17
|
mpbi |
|- ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) ) |
| 19 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 20 |
13 2
|
chsscon3i |
|- ( ( A i^i B ) C_ B <-> ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) ) ) |
| 21 |
19 20
|
mpbi |
|- ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) ) |
| 22 |
13
|
choccli |
|- ( _|_ ` ( A i^i B ) ) e. CH |
| 23 |
3 4 22
|
chlubii |
|- ( ( ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) ) /\ ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) ) ) -> ( ( _|_ ` A ) vH ( _|_ ` B ) ) C_ ( _|_ ` ( A i^i B ) ) ) |
| 24 |
18 21 23
|
mp2an |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) C_ ( _|_ ` ( A i^i B ) ) |
| 25 |
15 24
|
eqssi |
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) |