Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
|- A e. CH |
2 |
|
chjcl.2 |
|- B e. CH |
3 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
4 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
5 |
3 4
|
chub1i |
|- ( _|_ ` A ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
6 |
3 4
|
chjcli |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH |
7 |
1 6
|
chsscon1i |
|- ( ( _|_ ` A ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) <-> ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ A ) |
8 |
5 7
|
mpbi |
|- ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ A |
9 |
4 3
|
chub2i |
|- ( _|_ ` B ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
10 |
2 6
|
chsscon1i |
|- ( ( _|_ ` B ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) <-> ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B ) |
11 |
9 10
|
mpbi |
|- ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B |
12 |
8 11
|
ssini |
|- ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ ( A i^i B ) |
13 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
14 |
6 13
|
chsscon1i |
|- ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ ( A i^i B ) <-> ( _|_ ` ( A i^i B ) ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
15 |
12 14
|
mpbi |
|- ( _|_ ` ( A i^i B ) ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
16 |
|
inss1 |
|- ( A i^i B ) C_ A |
17 |
13 1
|
chsscon3i |
|- ( ( A i^i B ) C_ A <-> ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) ) ) |
18 |
16 17
|
mpbi |
|- ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) ) |
19 |
|
inss2 |
|- ( A i^i B ) C_ B |
20 |
13 2
|
chsscon3i |
|- ( ( A i^i B ) C_ B <-> ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) ) ) |
21 |
19 20
|
mpbi |
|- ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) ) |
22 |
13
|
choccli |
|- ( _|_ ` ( A i^i B ) ) e. CH |
23 |
3 4 22
|
chlubii |
|- ( ( ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) ) /\ ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) ) ) -> ( ( _|_ ` A ) vH ( _|_ ` B ) ) C_ ( _|_ ` ( A i^i B ) ) ) |
24 |
18 21 23
|
mp2an |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) C_ ( _|_ ` ( A i^i B ) ) |
25 |
15 24
|
eqssi |
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) |