Metamath Proof Explorer


Theorem chdmm1i

Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
Assertion chdmm1i
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 1 choccli
 |-  ( _|_ ` A ) e. CH
4 2 choccli
 |-  ( _|_ ` B ) e. CH
5 3 4 chub1i
 |-  ( _|_ ` A ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) )
6 3 4 chjcli
 |-  ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH
7 1 6 chsscon1i
 |-  ( ( _|_ ` A ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) <-> ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ A )
8 5 7 mpbi
 |-  ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ A
9 4 3 chub2i
 |-  ( _|_ ` B ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) )
10 2 6 chsscon1i
 |-  ( ( _|_ ` B ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) <-> ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B )
11 9 10 mpbi
 |-  ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B
12 8 11 ssini
 |-  ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ ( A i^i B )
13 1 2 chincli
 |-  ( A i^i B ) e. CH
14 6 13 chsscon1i
 |-  ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ ( A i^i B ) <-> ( _|_ ` ( A i^i B ) ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) ) )
15 12 14 mpbi
 |-  ( _|_ ` ( A i^i B ) ) C_ ( ( _|_ ` A ) vH ( _|_ ` B ) )
16 inss1
 |-  ( A i^i B ) C_ A
17 13 1 chsscon3i
 |-  ( ( A i^i B ) C_ A <-> ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) ) )
18 16 17 mpbi
 |-  ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) )
19 inss2
 |-  ( A i^i B ) C_ B
20 13 2 chsscon3i
 |-  ( ( A i^i B ) C_ B <-> ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) ) )
21 19 20 mpbi
 |-  ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) )
22 13 choccli
 |-  ( _|_ ` ( A i^i B ) ) e. CH
23 3 4 22 chlubii
 |-  ( ( ( _|_ ` A ) C_ ( _|_ ` ( A i^i B ) ) /\ ( _|_ ` B ) C_ ( _|_ ` ( A i^i B ) ) ) -> ( ( _|_ ` A ) vH ( _|_ ` B ) ) C_ ( _|_ ` ( A i^i B ) ) )
24 18 21 23 mp2an
 |-  ( ( _|_ ` A ) vH ( _|_ ` B ) ) C_ ( _|_ ` ( A i^i B ) )
25 15 24 eqssi
 |-  ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) )