Metamath Proof Explorer


Theorem chdmm2

Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chdmm2
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( A vH ( _|_ ` B ) ) )

Proof

Step Hyp Ref Expression
1 choccl
 |-  ( A e. CH -> ( _|_ ` A ) e. CH )
2 chdmm1
 |-  ( ( ( _|_ ` A ) e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` B ) ) )
3 1 2 sylan
 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` B ) ) )
4 ococ
 |-  ( A e. CH -> ( _|_ ` ( _|_ ` A ) ) = A )
5 4 adantr
 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` A ) ) = A )
6 5 oveq1d
 |-  ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` B ) ) = ( A vH ( _|_ ` B ) ) )
7 3 6 eqtrd
 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( A vH ( _|_ ` B ) ) )