| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							choccl | 
							 |-  ( B e. CH -> ( _|_ ` B ) e. CH )  | 
						
						
							| 2 | 
							
								
							 | 
							chdmm2 | 
							 |-  ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH ( _|_ ` ( _|_ ` B ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan2 | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH ( _|_ ` ( _|_ ` B ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ococ | 
							 |-  ( B e. CH -> ( _|_ ` ( _|_ ` B ) ) = B )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` B ) ) = B )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2d | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH ( _|_ ` ( _|_ ` B ) ) ) = ( A vH B ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqtrd | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH B ) )  |