| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chfacfisf.a |
|- A = ( N Mat R ) |
| 2 |
|
chfacfisf.b |
|- B = ( Base ` A ) |
| 3 |
|
chfacfisf.p |
|- P = ( Poly1 ` R ) |
| 4 |
|
chfacfisf.y |
|- Y = ( N Mat P ) |
| 5 |
|
chfacfisf.r |
|- .X. = ( .r ` Y ) |
| 6 |
|
chfacfisf.s |
|- .- = ( -g ` Y ) |
| 7 |
|
chfacfisf.0 |
|- .0. = ( 0g ` Y ) |
| 8 |
|
chfacfisf.t |
|- T = ( N matToPolyMat R ) |
| 9 |
|
chfacfisf.g |
|- G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) |
| 10 |
|
chfacfscmulcl.x |
|- X = ( var1 ` R ) |
| 11 |
|
chfacfscmulcl.m |
|- .x. = ( .s ` Y ) |
| 12 |
|
chfacfscmulcl.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 14 |
3 4
|
pmatlmod |
|- ( ( N e. Fin /\ R e. Ring ) -> Y e. LMod ) |
| 15 |
13 14
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> Y e. LMod ) |
| 16 |
15
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> Y e. LMod ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> Y e. LMod ) |
| 18 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 19 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 20 |
18 19
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
| 21 |
3
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 22 |
13 21
|
syl |
|- ( R e. CRing -> P e. Ring ) |
| 23 |
22
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. Ring ) |
| 24 |
18
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 25 |
23 24
|
syl |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( mulGrp ` P ) e. Mnd ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( mulGrp ` P ) e. Mnd ) |
| 27 |
|
simp3 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> K e. NN0 ) |
| 28 |
13
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. Ring ) |
| 29 |
10 3 19
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
| 30 |
28 29
|
syl |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> X e. ( Base ` P ) ) |
| 31 |
30
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> X e. ( Base ` P ) ) |
| 32 |
20 12 26 27 31
|
mulgnn0cld |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( K .^ X ) e. ( Base ` P ) ) |
| 33 |
3
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
| 34 |
33
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ P e. CRing ) ) |
| 35 |
34
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ P e. CRing ) ) |
| 36 |
4
|
matsca2 |
|- ( ( N e. Fin /\ P e. CRing ) -> P = ( Scalar ` Y ) ) |
| 37 |
35 36
|
syl |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P = ( Scalar ` Y ) ) |
| 38 |
37
|
eqcomd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Scalar ` Y ) = P ) |
| 39 |
38
|
fveq2d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Base ` ( Scalar ` Y ) ) = ( Base ` P ) ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( Base ` ( Scalar ` Y ) ) = ( Base ` P ) ) |
| 41 |
32 40
|
eleqtrrd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( K .^ X ) e. ( Base ` ( Scalar ` Y ) ) ) |
| 42 |
1 2 3 4 5 6 7 8 9
|
chfacfisf |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> ( Base ` Y ) ) |
| 43 |
13 42
|
syl3anl2 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> ( Base ` Y ) ) |
| 44 |
43
|
3adant3 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> G : NN0 --> ( Base ` Y ) ) |
| 45 |
44 27
|
ffvelcdmd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( G ` K ) e. ( Base ` Y ) ) |
| 46 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 47 |
|
eqid |
|- ( Scalar ` Y ) = ( Scalar ` Y ) |
| 48 |
|
eqid |
|- ( Base ` ( Scalar ` Y ) ) = ( Base ` ( Scalar ` Y ) ) |
| 49 |
46 47 11 48
|
lmodvscl |
|- ( ( Y e. LMod /\ ( K .^ X ) e. ( Base ` ( Scalar ` Y ) ) /\ ( G ` K ) e. ( Base ` Y ) ) -> ( ( K .^ X ) .x. ( G ` K ) ) e. ( Base ` Y ) ) |
| 50 |
17 41 45 49
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. NN0 ) -> ( ( K .^ X ) .x. ( G ` K ) ) e. ( Base ` Y ) ) |