Metamath Proof Explorer


Theorem chfnrn

Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999)

Ref Expression
Assertion chfnrn
|- ( ( F Fn A /\ A. x e. A ( F ` x ) e. x ) -> ran F C_ U. A )

Proof

Step Hyp Ref Expression
1 fvelrnb
 |-  ( F Fn A -> ( y e. ran F <-> E. x e. A ( F ` x ) = y ) )
2 1 biimpd
 |-  ( F Fn A -> ( y e. ran F -> E. x e. A ( F ` x ) = y ) )
3 eleq1
 |-  ( ( F ` x ) = y -> ( ( F ` x ) e. x <-> y e. x ) )
4 3 biimpcd
 |-  ( ( F ` x ) e. x -> ( ( F ` x ) = y -> y e. x ) )
5 4 ralimi
 |-  ( A. x e. A ( F ` x ) e. x -> A. x e. A ( ( F ` x ) = y -> y e. x ) )
6 rexim
 |-  ( A. x e. A ( ( F ` x ) = y -> y e. x ) -> ( E. x e. A ( F ` x ) = y -> E. x e. A y e. x ) )
7 5 6 syl
 |-  ( A. x e. A ( F ` x ) e. x -> ( E. x e. A ( F ` x ) = y -> E. x e. A y e. x ) )
8 2 7 sylan9
 |-  ( ( F Fn A /\ A. x e. A ( F ` x ) e. x ) -> ( y e. ran F -> E. x e. A y e. x ) )
9 eluni2
 |-  ( y e. U. A <-> E. x e. A y e. x )
10 8 9 syl6ibr
 |-  ( ( F Fn A /\ A. x e. A ( F ` x ) e. x ) -> ( y e. ran F -> y e. U. A ) )
11 10 ssrdv
 |-  ( ( F Fn A /\ A. x e. A ( F ` x ) e. x ) -> ran F C_ U. A )