| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inteq |  |-  ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> |^| A = |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( |^| A e. CH <-> |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) e. CH ) ) | 
						
							| 3 |  | sseq1 |  |-  ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( A C_ CH <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH ) ) | 
						
							| 4 |  | neeq1 |  |-  ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( A =/= (/) <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) | 
						
							| 5 | 3 4 | anbi12d |  |-  ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( ( A C_ CH /\ A =/= (/) ) <-> ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) ) | 
						
							| 6 |  | sseq1 |  |-  ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( CH C_ CH <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH ) ) | 
						
							| 7 |  | neeq1 |  |-  ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( CH =/= (/) <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) | 
						
							| 8 | 6 7 | anbi12d |  |-  ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( ( CH C_ CH /\ CH =/= (/) ) <-> ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) ) | 
						
							| 9 |  | ssid |  |-  CH C_ CH | 
						
							| 10 |  | h0elch |  |-  0H e. CH | 
						
							| 11 | 10 | ne0ii |  |-  CH =/= (/) | 
						
							| 12 | 9 11 | pm3.2i |  |-  ( CH C_ CH /\ CH =/= (/) ) | 
						
							| 13 | 5 8 12 | elimhyp |  |-  ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) | 
						
							| 14 | 13 | chintcli |  |-  |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) e. CH | 
						
							| 15 | 2 14 | dedth |  |-  ( ( A C_ CH /\ A =/= (/) ) -> |^| A e. CH ) |