Step |
Hyp |
Ref |
Expression |
1 |
|
inteq |
|- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> |^| A = |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) ) |
2 |
1
|
eleq1d |
|- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( |^| A e. CH <-> |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) e. CH ) ) |
3 |
|
sseq1 |
|- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( A C_ CH <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH ) ) |
4 |
|
neeq1 |
|- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( A =/= (/) <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) |
5 |
3 4
|
anbi12d |
|- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( ( A C_ CH /\ A =/= (/) ) <-> ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) ) |
6 |
|
sseq1 |
|- ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( CH C_ CH <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH ) ) |
7 |
|
neeq1 |
|- ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( CH =/= (/) <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) |
8 |
6 7
|
anbi12d |
|- ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( ( CH C_ CH /\ CH =/= (/) ) <-> ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) ) |
9 |
|
ssid |
|- CH C_ CH |
10 |
|
h0elch |
|- 0H e. CH |
11 |
10
|
ne0ii |
|- CH =/= (/) |
12 |
9 11
|
pm3.2i |
|- ( CH C_ CH /\ CH =/= (/) ) |
13 |
5 8 12
|
elimhyp |
|- ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) |
14 |
13
|
chintcli |
|- |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) e. CH |
15 |
2 14
|
dedth |
|- ( ( A C_ CH /\ A =/= (/) ) -> |^| A e. CH ) |