| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( A = if ( A e. CH , A , 0H ) -> ( A vH 0H ) = ( if ( A e. CH , A , 0H ) vH 0H ) ) |
| 2 |
|
id |
|- ( A = if ( A e. CH , A , 0H ) -> A = if ( A e. CH , A , 0H ) ) |
| 3 |
1 2
|
eqeq12d |
|- ( A = if ( A e. CH , A , 0H ) -> ( ( A vH 0H ) = A <-> ( if ( A e. CH , A , 0H ) vH 0H ) = if ( A e. CH , A , 0H ) ) ) |
| 4 |
|
h0elch |
|- 0H e. CH |
| 5 |
4
|
elimel |
|- if ( A e. CH , A , 0H ) e. CH |
| 6 |
5
|
chj0i |
|- ( if ( A e. CH , A , 0H ) vH 0H ) = if ( A e. CH , A , 0H ) |
| 7 |
3 6
|
dedth |
|- ( A e. CH -> ( A vH 0H ) = A ) |