Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
|- A e. CH |
2 |
|
chjcl.2 |
|- B e. CH |
3 |
|
oveq12 |
|- ( ( A = 0H /\ B = 0H ) -> ( A vH B ) = ( 0H vH 0H ) ) |
4 |
|
h0elch |
|- 0H e. CH |
5 |
4
|
chj0i |
|- ( 0H vH 0H ) = 0H |
6 |
3 5
|
eqtrdi |
|- ( ( A = 0H /\ B = 0H ) -> ( A vH B ) = 0H ) |
7 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
8 |
|
sseq2 |
|- ( ( A vH B ) = 0H -> ( A C_ ( A vH B ) <-> A C_ 0H ) ) |
9 |
7 8
|
mpbii |
|- ( ( A vH B ) = 0H -> A C_ 0H ) |
10 |
1
|
chle0i |
|- ( A C_ 0H <-> A = 0H ) |
11 |
9 10
|
sylib |
|- ( ( A vH B ) = 0H -> A = 0H ) |
12 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
13 |
|
sseq2 |
|- ( ( A vH B ) = 0H -> ( B C_ ( A vH B ) <-> B C_ 0H ) ) |
14 |
12 13
|
mpbii |
|- ( ( A vH B ) = 0H -> B C_ 0H ) |
15 |
2
|
chle0i |
|- ( B C_ 0H <-> B = 0H ) |
16 |
14 15
|
sylib |
|- ( ( A vH B ) = 0H -> B = 0H ) |
17 |
11 16
|
jca |
|- ( ( A vH B ) = 0H -> ( A = 0H /\ B = 0H ) ) |
18 |
6 17
|
impbii |
|- ( ( A = 0H /\ B = 0H ) <-> ( A vH B ) = 0H ) |