Metamath Proof Explorer


Theorem chj0i

Description: Join with lattice zero in CH . (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis ch0le.1
|- A e. CH
Assertion chj0i
|- ( A vH 0H ) = A

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 h0elch
 |-  0H e. CH
3 1 2 chjvali
 |-  ( A vH 0H ) = ( _|_ ` ( _|_ ` ( A u. 0H ) ) )
4 1 ch0lei
 |-  0H C_ A
5 ssequn2
 |-  ( 0H C_ A <-> ( A u. 0H ) = A )
6 4 5 mpbi
 |-  ( A u. 0H ) = A
7 6 fveq2i
 |-  ( _|_ ` ( A u. 0H ) ) = ( _|_ ` A )
8 7 fveq2i
 |-  ( _|_ ` ( _|_ ` ( A u. 0H ) ) ) = ( _|_ ` ( _|_ ` A ) )
9 1 pjococi
 |-  ( _|_ ` ( _|_ ` A ) ) = A
10 3 8 9 3eqtri
 |-  ( A vH 0H ) = A