Step |
Hyp |
Ref |
Expression |
1 |
|
chjcom |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH B ) = ( B vH A ) ) |
3 |
2
|
oveq1d |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A vH B ) vH C ) = ( ( B vH A ) vH C ) ) |
4 |
|
chjass |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) ) |
5 |
|
chjass |
|- ( ( B e. CH /\ A e. CH /\ C e. CH ) -> ( ( B vH A ) vH C ) = ( B vH ( A vH C ) ) ) |
6 |
5
|
3com12 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( B vH A ) vH C ) = ( B vH ( A vH C ) ) ) |
7 |
3 4 6
|
3eqtr3d |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH ( B vH C ) ) = ( B vH ( A vH C ) ) ) |