Metamath Proof Explorer
		
		
		
		Description:  Join with Hilbert lattice one.  (Contributed by NM, 6-Aug-2004)
       (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						ch0le.1 | 
						|- A e. CH  | 
					
				
					 | 
					Assertion | 
					chj1i | 
					|- ( A vH ~H ) = ~H  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ch0le.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							helch | 
							 |-  ~H e. CH  | 
						
						
							| 3 | 
							
								1 2
							 | 
							chjcli | 
							 |-  ( A vH ~H ) e. CH  | 
						
						
							| 4 | 
							
								3
							 | 
							chssii | 
							 |-  ( A vH ~H ) C_ ~H  | 
						
						
							| 5 | 
							
								2 1
							 | 
							chub2i | 
							 |-  ~H C_ ( A vH ~H )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqssi | 
							 |-  ( A vH ~H ) = ~H  |