Step |
Hyp |
Ref |
Expression |
1 |
|
chj12.1 |
|- A e. CH |
2 |
|
chj12.2 |
|- B e. CH |
3 |
|
chj12.3 |
|- C e. CH |
4 |
|
chj4.4 |
|- D e. CH |
5 |
2 3 4
|
chj12i |
|- ( B vH ( C vH D ) ) = ( C vH ( B vH D ) ) |
6 |
5
|
oveq2i |
|- ( A vH ( B vH ( C vH D ) ) ) = ( A vH ( C vH ( B vH D ) ) ) |
7 |
3 4
|
chjcli |
|- ( C vH D ) e. CH |
8 |
1 2 7
|
chjassi |
|- ( ( A vH B ) vH ( C vH D ) ) = ( A vH ( B vH ( C vH D ) ) ) |
9 |
2 4
|
chjcli |
|- ( B vH D ) e. CH |
10 |
1 3 9
|
chjassi |
|- ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) |
11 |
6 8 10
|
3eqtr4i |
|- ( ( A vH B ) vH ( C vH D ) ) = ( ( A vH C ) vH ( B vH D ) ) |