Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
|- A e. CH |
2 |
|
chjcl.2 |
|- B e. CH |
3 |
|
chjass.3 |
|- C e. CH |
4 |
|
inass |
|- ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) i^i ( _|_ ` C ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) |
5 |
1 2
|
chdmj1i |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
6 |
5
|
ineq1i |
|- ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) i^i ( _|_ ` C ) ) |
7 |
2 3
|
chdmj1i |
|- ( _|_ ` ( B vH C ) ) = ( ( _|_ ` B ) i^i ( _|_ ` C ) ) |
8 |
7
|
ineq2i |
|- ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) |
9 |
4 6 8
|
3eqtr4i |
|- ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) |
10 |
9
|
fveq2i |
|- ( _|_ ` ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) ) = ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) ) |
11 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
12 |
11 3
|
chdmm4i |
|- ( _|_ ` ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) ) = ( ( A vH B ) vH C ) |
13 |
2 3
|
chjcli |
|- ( B vH C ) e. CH |
14 |
1 13
|
chdmm4i |
|- ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) ) = ( A vH ( B vH C ) ) |
15 |
10 12 14
|
3eqtr3i |
|- ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) |